

Neurology perspectives

19055 - Computación hacia una medicina personalizada: optimización de modelos predictivos dinámicos en la toma de decisiones

Marta Enguita, J. 1 ; Martínez García, M. 2 ; Rubio Baines, I. 3 ; Herrera Isasi, M. 3 ; Mendioroz Iriarte, M. 3 ; Muñoz Arrondo, R. 3 ; de la Riva Juez, P. 1 ; Martínez Zabaleta, M. 1 ; Inza, I. 4 ; Lozano, J. 2

¹Servicio de Neurología. Hospital Donostia-Donostia Ospitalea; ²Basque Center for Applied Mathemathics (BCAM); ³Servicio de Neurología. Hospital de Navarra; ⁴Facultad de Informática. Universidad País Vasco (UPV/EHU);

Resumen

Objetivos: La aplicación de modelos predictivos pronósticos en la práctica clínica es fundamental en la toma de decisiones. Sin embargo, su carácter estático limita su aplicabilidad por no tener los falsos positivos/negativos (FP/FN) la misma repercusión según la decisión en la que influyan. Proponemos la optimización de modelos predictivos en ictus isquémico mediante el uso de técnicas de computación en Python para su adecuación a preguntas clínicas concretas.

Material y métodos: Registro observacional retrospectivo de 492 casos de ictus isquémico atendidos entre 11/2015-06/2018 con variables clínico-demográficas y pronósticas, con mortalidad (Mort3m) e independencia funcional (IF3m, mRS 0-2) a los 3 meses como variables resultado. Se construyó mediante optimización multiobjetivo una batería de 5 modelos de regresión logística que cubrían todo el espectro de sensibilidad y especificidad para cada problema clínico (Mort3m e IF3m) mediante asignación de pesos específicos a cada variable.

Resultados: Se diseñaron modelos predictivos para Mort3m e IF3m, con 5 versiones diferentes que permiten adecuar la capacidad predictiva a la situación clínica (rangos de sensibilidad/especificidad entre 0,4-0,9). Además, se plantean diferentes escenarios clínicos en los que aplicar estos rangos dinámicos. Así, un modelo específico para mortalidad filtrará pacientes con posibilidades máximas de fallecer facilitando la información pronóstica y adecuación precoz evitando FP, mientras que un modelo hipersensible en IF3m permitiría aplicar rehabilitación intensiva en todos los pacientes que puedan llegar a IF3m a riesgo de FP pero evitando FN.

Conclusión: La disponibilidad de modelos predictivos dinámicos permite su adecuación a cada situación clínica optimizando los algoritmos en favor de una mejor utilización de recursos.