was read the article
array:23 [ "pii" => "S0325754124000038" "issn" => "03257541" "doi" => "10.1016/j.ram.2023.10.002" "estado" => "S300" "fechaPublicacion" => "2024-04-01" "aid" => "575" "copyright" => "Asociación Argentina de Microbiología" "copyrightAnyo" => "2024" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Rev Argent Microbiol. 2024;56:175-86" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "itemSiguiente" => array:18 [ "pii" => "S0325754124000075" "issn" => "03257541" "doi" => "10.1016/j.ram.2023.12.005" "estado" => "S300" "fechaPublicacion" => "2024-04-01" "aid" => "579" "copyright" => "Asociación Argentina de Microbiología" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Rev Argent Microbiol. 2024;56:187-90" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:14 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Informe breve</span>" "titulo" => "Carpogenic germination of <span class="elsevierStyleItalic">Sclerotinia sclerotiorum</span> sclerotia in Brassica oleracea var gemmifera (VN: Brussels sprouts) in North Patagonia, Argentina" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:3 [ 0 => "en" 1 => "en" 2 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "187" "paginaFinal" => "190" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Germinación carpogénica de esclerocios de <span class="elsevierStyleItalic">Sclerotinia sclerotiorum</span> en Brassica oleracea var gemmifera (VN: Brussels sprouts) en Patagonia Norte, Argentina" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2264 "Ancho" => 1505 "Tamanyo" => 893415 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Brussels sprouts field affected by <span class="elsevierStyleItalic">S. sclerotiorum</span> (a). Plants showing aerial-apical (a) and basal stem (b) infections. Sclerotia on the ground (c). Sclerotia germinated in apothecia in soil (d). Asci with eight ascospores and paraphyses formed in the apothecium (e). Sclerotia development on PDA in a Petri plate after 7-d incubation (f).</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "A.G. Scarso, M.C. Sosa, M.J. Ousset, M.C. Lutz" "autores" => array:4 [ 0 => array:2 [ "nombre" => "A.G." "apellidos" => "Scarso" ] 1 => array:2 [ "nombre" => "M.C." "apellidos" => "Sosa" ] 2 => array:2 [ "nombre" => "M.J." "apellidos" => "Ousset" ] 3 => array:2 [ "nombre" => "M.C." "apellidos" => "Lutz" ] ] ] ] "resumen" => array:1 [ 0 => array:3 [ "titulo" => "Highlights" "clase" => "author-highlights" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall"><ul class="elsevierStyleList" id="lis0005"><li class="elsevierStyleListItem" id="lsti0005"><span class="elsevierStyleLabel"><span class="elsevierStyleBold">•</span></span><p id="par0005" class="elsevierStylePara elsevierViewall">First report of the sexual phase of <span class="elsevierStyleItalic">Sclerotinia sclerotiorum</span> in Patagonia - Argentina.</p></li><li class="elsevierStyleListItem" id="lsti0010"><span class="elsevierStyleLabel">•</span><p id="par0010" class="elsevierStylePara elsevierViewall">High incidence of ascosporic infections.</p></li></ul></p></span>" ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0325754124000075?idApp=UINPBA00004N" "url" => "/03257541/0000005600000002/v1_202406240441/S0325754124000075/v1_202406240441/en/main.assets" ] "itemAnterior" => array:18 [ "pii" => "S032575412400004X" "issn" => "03257541" "doi" => "10.1016/j.ram.2023.12.003" "estado" => "S300" "fechaPublicacion" => "2024-04-01" "aid" => "576" "copyright" => "Asociación Argentina de Microbiología" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Rev Argent Microbiol. 2024;56:165-74" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:14 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Genomic characterization of <span class="elsevierStyleItalic">Moraxella bovis</span> and <span class="elsevierStyleItalic">Moraxella bovoculi</span> Uruguayan strains isolated from calves with infectious bovine keratoconjunctivitis" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:3 [ 0 => "en" 1 => "en" 2 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "165" "paginaFinal" => "174" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Caracterización genómica de cepas de <span class="elsevierStyleItalic">Moraxella bovis</span> y <span class="elsevierStyleItalic">Moraxella bovoculi</span> causantes de queratoconjuntivitis infecciosa bovina en Uruguay" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2384 "Ancho" => 1675 "Tamanyo" => 189980 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Benchmarking universal single-copy orthologs of assembled <span class="elsevierStyleItalic">M. bovis</span> and <span class="elsevierStyleItalic">M. bovoculi</span> genomes and their reference for Gamma-proteobacteria class. Results of BUSCO run for <span class="elsevierStyleItalic">M. bovis</span> and <span class="elsevierStyleItalic">M. bovoculi</span> annotated genomes compared to their reference. Top: summary of BUSCO groups found for <span class="elsevierStyleItalic">M. bovis.</span> Bottom: Venn diagram showing the complete and single-copy BUSCOs shared by <span class="elsevierStyleItalic">M. bovis</span> and its reference genome (A). The same interpretation applies for <span class="elsevierStyleItalic">M. bovoculi</span> (B).</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Lucía Bilbao, Sofía Acquistapace, Ana Umpiérrez, Pablo Smircich, Pablo Alonzo, José R. Sotelo-Silveira, Pablo Zunino" "autores" => array:7 [ 0 => array:2 [ "nombre" => "Lucía" "apellidos" => "Bilbao" ] 1 => array:2 [ "nombre" => "Sofía" "apellidos" => "Acquistapace" ] 2 => array:2 [ "nombre" => "Ana" "apellidos" => "Umpiérrez" ] 3 => array:2 [ "nombre" => "Pablo" "apellidos" => "Smircich" ] 4 => array:2 [ "nombre" => "Pablo" "apellidos" => "Alonzo" ] 5 => array:2 [ "nombre" => "José R." "apellidos" => "Sotelo-Silveira" ] 6 => array:2 [ "nombre" => "Pablo" "apellidos" => "Zunino" ] ] ] ] "resumen" => array:1 [ 0 => array:3 [ "titulo" => "Highlights" "clase" => "author-highlights" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall"><ul class="elsevierStyleList" id="lis0005"><li class="elsevierStyleListItem" id="lsti0005"><span class="elsevierStyleLabel">•</span><p id="par0005" class="elsevierStylePara elsevierViewall">Clinical IBK-associated <span class="elsevierStyleItalic">M. bovis</span> and <span class="elsevierStyleItalic">M. bovoculi</span> Uruguayan strains were sequenced.</p></li><li class="elsevierStyleListItem" id="lsti0010"><span class="elsevierStyleLabel">•</span><p id="par0010" class="elsevierStylePara elsevierViewall">Remarkable similarities with reference genomes were observed.</p></li><li class="elsevierStyleListItem" id="lsti0015"><span class="elsevierStyleLabel">•</span><p id="par0015" class="elsevierStylePara elsevierViewall">Differences were observed among virulence factors of both strains.</p></li><li class="elsevierStyleListItem" id="lsti0020"><span class="elsevierStyleLabel">•</span><p id="par0020" class="elsevierStylePara elsevierViewall">A putative and lax recombination site was identified in the <span class="elsevierStyleItalic">M. bovis</span> genome.</p></li><li class="elsevierStyleListItem" id="lsti0025"><span class="elsevierStyleLabel">•</span><p id="par0025" class="elsevierStylePara elsevierViewall">No fimbiral recombination sites were found in <span class="elsevierStyleItalic">M. bovoculi</span> genome.</p></li></ul></p></span>" ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S032575412400004X?idApp=UINPBA00004N" "url" => "/03257541/0000005600000002/v1_202406240441/S032575412400004X/v1_202406240441/en/main.assets" ] "en" => array:23 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Transcriptional study of genes involved in the passage from teliospore to hyphae stage in the fungus <span class="elsevierStyleItalic">Thecaphora frezii</span>, the causal agent of peanut smut" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "175" "paginaFinal" => "186" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "María S. Díaz, Néstor W. Soria, Ana C. Figueroa, Pablo Yang, Esteban H. Badariotti, Valeria R. Alasino, Pablo Vélez, Dante M. Beltramo" "autores" => array:8 [ 0 => array:4 [ "nombre" => "María S." "apellidos" => "Díaz" "email" => array:1 [ 0 => "soledaddiaz81@gmail.com" ] "referencia" => array:3 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">1</span>" "identificador" => "fn0005" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 1 => array:4 [ "nombre" => "Néstor W." "apellidos" => "Soria" "email" => array:1 [ 0 => "nestorwsoria@gmail.com" ] "referencia" => array:3 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">1</span>" "identificador" => "fn0005" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 2 => array:3 [ "nombre" => "Ana C." "apellidos" => "Figueroa" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 3 => array:3 [ "nombre" => "Pablo" "apellidos" => "Yang" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 4 => array:3 [ "nombre" => "Esteban H." "apellidos" => "Badariotti" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 5 => array:3 [ "nombre" => "Valeria R." "apellidos" => "Alasino" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0020" ] ] ] 6 => array:3 [ "nombre" => "Pablo" "apellidos" => "Vélez" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 7 => array:3 [ "nombre" => "Dante M." "apellidos" => "Beltramo" "referencia" => array:3 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0020" ] ] ] ] "afiliaciones" => array:4 [ 0 => array:3 [ "entidad" => "Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Pabellón CEPROCOR (X5164), Santa María de Punilla, Córdoba, Argentina" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Cátedra de Biotecnología, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Av. Armada Argentina 3555 (X5016DHK), Córdoba, Argentina" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Cátedra Introducción a las Ciencias Agropecuarias, Facultad de Ciencias Agropecuarias, Universidad Católica de Córdoba, Av. Armada Argentina 3555 (X5016DHK), Córdoba, Argentina" "etiqueta" => "c" "identificador" => "aff0015" ] 3 => array:3 [ "entidad" => "Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pabellón CEPROCOR (X5164), Santa María de Punilla, Córdoba, Argentina" "etiqueta" => "d" "identificador" => "aff0020" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding authors." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Estudio transcripcional de genes que participan en el pasaje del estadio de teliospora a hifa en el hongo <span class="elsevierStyleItalic">Thecaphora frezii</span>, agente causal del carbón del maní" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1361 "Ancho" => 1681 "Tamanyo" => 138962 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Functional gene categorization (%). (1) Cell cycle and DNA processing (CCDP); (2) cell fate (CF); (3) cell rescue, defense and virulence (CRDV); (4) detoxification involving CYP450 (DIC); (5) energy (EN); (6) interaction of nutrients and nutritional adaptation (INNA); (7) metabolism (ME); (8) protein with binding function or cofactor requirement (PBF); (9) stress, cell differentiation and biogenesis of cellular components (SDBCC); (10) transport and cellular communication (TCC); (11) transcription (TPF); (12) unclassified (UNCL) proteins and (13) implicated in several metabolic pathways (SW).</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Introduction</span><p id="par0020" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">Thecaphora frezii</span> (<span class="elsevierStyleItalic">T. frezii</span>) is a fungus that infects peanut plants (<span class="elsevierStyleItalic">Arachis hypogaea</span> L.)<a class="elsevierStyleCrossRef" href="#bib0200"><span class="elsevierStyleSup">4</span></a> which generates brown carbonaceous masses in fruits and leads to significant economic losses in these plantations. These teliospores are resting structures that enable the fungus to overwinter and survive in the soil for years<a class="elsevierStyleCrossRef" href="#bib0355"><span class="elsevierStyleSup">35</span></a>. When peanut pegs penetrate the soil, their exudates disrupt teliospore dormancy, promoting spore germination and, thus, local infections<a class="elsevierStyleCrossRef" href="#bib0255"><span class="elsevierStyleSup">15</span></a>. This infection develops during peanut pegging. The germination of teliospores comprises the development of a probasidium, which leads to basidiospores <span class="elsevierStyleItalic">via</span> meiosis. Once basidiospores germinate, compatible haploid germ tubes fuse to form a mycelium, responsible for the infection. When peanut gynophores dig into the ground, dikaryotic hyphae can pass through them, colonize tissues, and substitute cells with reddish-brown teliospores. During shelling, teliospores are released and remain on the soil, where they can survive in a metabolically dormant state.</p><p id="par0025" class="elsevierStylePara elsevierViewall">Several pathogenic fungi for plants develop this transition from spores to hyphae to exert their lifecycle, such as <span class="elsevierStyleItalic">Ustilago maydis</span> (<span class="elsevierStyleItalic">U. maydis</span>)<a class="elsevierStyleCrossRef" href="#bib0320"><span class="elsevierStyleSup">28</span></a>, <span class="elsevierStyleItalic">Microbotryum violaceum</span><a class="elsevierStyleCrossRef" href="#bib0320"><span class="elsevierStyleSup">28</span></a>, <span class="elsevierStyleItalic">Ophiostoma ulmi</span><a class="elsevierStyleCrossRef" href="#bib0215"><span class="elsevierStyleSup">7</span></a>, <span class="elsevierStyleItalic">Taphrina deformans</span><a class="elsevierStyleCrossRef" href="#bib0215"><span class="elsevierStyleSup">7</span></a> and <span class="elsevierStyleItalic">Holleya sinecauda</span><a class="elsevierStyleCrossRef" href="#bib0215"><span class="elsevierStyleSup">7</span></a>. Note that <span class="elsevierStyleItalic">T. frezii</span> belongs to the same smut class as <span class="elsevierStyleItalic">U. maydis</span>, and recent research on this fungus shows differential gene expression during teliospore germination<a class="elsevierStyleCrossRef" href="#bib0345"><span class="elsevierStyleSup">33</span></a> and increased protein level after 6<span class="elsevierStyleHsp" style=""></span>h from teliospore germination, also along with an increase in RNA synthesis. This morphological shift, typically triggered by multiple environmental signals, is tightly controlled by complex genetic pathways to ensure successful pathogenic development. Mutation or drug inhibition of this passage has been shown to block the process of pathogenicity, and it is a clear example of the biological event of cell differentiation, representing a basic model for the study of this important phenomenon<a class="elsevierStyleCrossRef" href="#bib0310"><span class="elsevierStyleSup">26</span></a>.</p><p id="par0030" class="elsevierStylePara elsevierViewall">In this study, we aim to identify some genes that are differentially expressed during the transition from teliospore to hyphal stage in the fungus <span class="elsevierStyleItalic">T. frezii</span> according to specific <span class="elsevierStyleItalic">in vitro</span> culture conditions. The findings obtained in this work will possibly contribute to understanding some of the biological mechanisms underlying <span class="elsevierStyleItalic">T. frezii</span> development, especially in this essential shift point, which gives rise to the formation of basidiospores and later hyphae, just before infective structures are formed.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Materials and methods</span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Collection, isolation and cultivation of <span class="elsevierStyleItalic">Thecaphora frezii</span></span><p id="par0035" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">T. frezii</span> teliospores were found in hypertrophic peanut pods, indicating the presence of the disease. Pods from plants grown in General Cabrera, Córdoba, Argentina, were superficially disinfected with 0.5% NaOCl (v/v); after that, teliospores were obtained and disinfected with 5% NaClO (v/v), washed twice with sterile distilled water, plated on potato-dextrose agar (Britannia PDA) and incubated at 26<span class="elsevierStyleHsp" style=""></span>°C in the dark until germination<a class="elsevierStyleCrossRef" href="#bib0335"><span class="elsevierStyleSup">31</span></a>. Daily observation and a count of colonies in PDA plates was made over 15 days, to calculate the germination rate.</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Nuclear staining of <span class="elsevierStyleItalic">Thecaphora frezii</span> hyphae</span><p id="par0040" class="elsevierStylePara elsevierViewall">Hyphae were stained according to Arias et al.<a class="elsevierStyleCrossRef" href="#bib0190"><span class="elsevierStyleSup">2</span></a> Briefly, they were incubated for 24<span class="elsevierStyleHsp" style=""></span>h in 70% (v/v) ethanol, then washed with sterile distilled water and then treated with RNase A (65<span class="elsevierStyleHsp" style=""></span>°C, 10<span class="elsevierStyleHsp" style=""></span>min). Propidium iodide (1% v/v) was added for 10<span class="elsevierStyleHsp" style=""></span>min followed by two rinses with sterile distilled water. Cell nuclei were visualized under a fluorescence microscopy Zeiss – Axio observer D1 (Zeiss, Germany). The microscope was fitted with a Mono-camera AxioCam 506, and images were processed using the Imaging Software ZEN 2 Core.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">RNA extraction</span><p id="par0045" class="elsevierStylePara elsevierViewall">Total RNA was extracted from both teliospores and hyphae of <span class="elsevierStyleItalic">T. frezii</span> using the TRIzol reagent (Invitrogen, California, USA), following the manufacturer's instructions<a class="elsevierStyleCrossRef" href="#bib0330"><span class="elsevierStyleSup">30</span></a> (Invitrogen, California, USA). To initiate this process, a pool of teliospores was created, harvested from carbonaceous peanut pods from 20 distinct plants. This sample was subsequently divided into two subsets. One subset was designated for RNA extraction and subsequent RNAseq analysis and the second subset was employed to cultivate mycelia on PDA plates, and RNA was later extracted from three separate plates. To ensure the purity of the RNA samples, genomic DNA was effectively eliminated through on-column digestion using DNase (Qiagen, Germany) at the recommended concentration by the manufacturer. The success of the RNA extraction process was evaluated in terms of both quality and quantity. Potential RNA degradation and impurities were assessed using a 1.5% (w/v) agarose gel, while RNA purity was confirmed using a NanoPhotometer spectrophotometer (Implen, California, USA). RNA concentration was calculated using the Qubit RNA assay kit and Qubit Fluorometer 2.0 (Life Technologies, California, USA).</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Library preparation and RNA-Seq</span><p id="par0050" class="elsevierStylePara elsevierViewall">The cDNA library was prepared using the RNA of <span class="elsevierStyleItalic">T. frezii</span>'s teliospores and hyphae. They were performed using the NEB Next Ultra RNA kit for Illumina (Nebraska, USA) according to the manufacturer's instructions. Briefly, mRNA was purified from total RNA using poly-T oligo-attached magnetic beads. Fragmentation was carried out with divalent cations under elevated temperature in NEB Next First Strand Synthesis Reaction Buffer (5×). The first strand cDNA was synthesized using random hexamer primers and M-MuLV reverse transcriptase. The second strand cDNA synthesis was subsequently performed using DNA polymerase I and RNase H. cDNA was then size-selected and adaptor-ligated, and the products were selectively enriched. The clustering of the index-coded samples was performed on a cBot Cluster Generation System using TruSeq PE Cluster Kit v3-cBot-HS (Illumina, NEB, USA), following the manufacturer's instructions.</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">RNA-Seq data analysis</span><p id="par0055" class="elsevierStylePara elsevierViewall">The cDNA libraries were sequenced on Illumina HiSeq 1500 to generate 2× 150<span class="elsevierStyleHsp" style=""></span>bp pair-end reads at the INDEAR service facilities (Rosario, Argentina). Briefly, a <span class="elsevierStyleItalic">de novo</span> transcriptome was assembled with all reads, then the gene expression in each condition was measured with the counts per million (CPM) of reads. RNA-Seq read quality was confirmed by FastQC software (<a href="http://www.bioinformatics.babraham.ac.uk/projects/fastqc/">http://www.bioinformatics.babraham.ac.uk/projects/fastqc/</a>) and compared (teliospores and hyphae). Fold change (FC) and statistical significance for all comparisons were determined <span class="elsevierStyleItalic">via</span> General Linear Model statistics using the EdgeR package version 3.4.2 of Bioconductor<a class="elsevierStyleCrossRef" href="#bib0305"><span class="elsevierStyleSup">25</span></a> in the R environment (version 3.0.2, R Core Team, 2018)<a class="elsevierStyleCrossRef" href="#bib0295"><span class="elsevierStyleSup">23</span></a>.</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065"><span class="elsevierStyleItalic">T. frezii</span> differentially expressed genes from teliospore to hyphal stage</span><p id="par0060" class="elsevierStylePara elsevierViewall">Data obtained from RNA-Seq were used to identify differentially expressed genes, involved in the <span class="elsevierStyleItalic">T. frezii</span> life cycle, during the transition from teliospore to hyphae. A minimum 2-fold change up or down was the cut-off to consider whether a gene was positively or negatively differentially expressed. However, in specific cases, less than 2-fold differences were considered, particularly focusing on the different expression of certain genes that have been previously observed in other fungi.</p><p id="par0065" class="elsevierStylePara elsevierViewall">FungiFun2<a class="elsevierStyleCrossRef" href="#bib0290"><span class="elsevierStyleSup">22</span></a>, a tool for performing functional enrichment analysis of fungal genes, was used to obtain functional annotation of the differentially expressed genes of <span class="elsevierStyleItalic">T. frezii</span> teliospores and hyphae. As <span class="elsevierStyleItalic">T. frezii</span> is not present in the FungiFun2 database, we used orthologous gene sequences from <span class="elsevierStyleItalic">U. maydis</span> to assign functions to <span class="elsevierStyleItalic">T. frezii</span> genes.</p></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">qPCR analysis of selected genes</span><p id="par0070" class="elsevierStylePara elsevierViewall">For the study of quantitative expression by real-time PCR, some of the differentially expressed genes in the transition from teliospores to hyphae were selected. The oligonucleotide list for the genes (some genes differentially expressed in other fungal species were selected) were designed using the Primer-Blast program (NCBI, NIH) (<a class="elsevierStyleCrossRef" href="#sec0110">Table S1</a>). Quantification of gene expression was performed through the real-time PCR detection system StepOne Plus Real-Time PCR system® (ThermoFisher, Massachusetts, USA).</p><p id="par0075" class="elsevierStylePara elsevierViewall">cDNA was prepared from the same RNA samples as those used for RNA-Seq analysis, using the enzyme SuperScript® III Reverse Transcriptase (Invitrogen; Thermo Fisher Scientific™, USA) and following the manufacturer's recommendations. The qPCR was performed with three biological replicates using the Sybr® Green Master Mix kit (Applied Biosystems; Thermo Fisher Scientific, California, USA), following the manufacturer's recommendations.</p><p id="par0080" class="elsevierStylePara elsevierViewall">Relative gene expression was performed using the actin transcript as a reference gene for expression normalization (this gene is highly used for fungal gene expression normalization<a class="elsevierStyleCrossRefs" href="#bib0280"><span class="elsevierStyleSup">20,29</span></a>). The program used for all the targets was: 95<span class="elsevierStyleHsp" style=""></span>°C for 3<span class="elsevierStyleHsp" style=""></span>min, 40 cycles of 95<span class="elsevierStyleHsp" style=""></span>°C for 10<span class="elsevierStyleHsp" style=""></span>s and 60<span class="elsevierStyleHsp" style=""></span>°C for 30<span class="elsevierStyleHsp" style=""></span>s. Fluorescence was read after this step. At the end of the program, temperature was reduced from 95<span class="elsevierStyleHsp" style=""></span>°C to 65<span class="elsevierStyleHsp" style=""></span>°C at a rate ramp of 0.1<span class="elsevierStyleHsp" style=""></span>°C/s, which allowed evaluation of the melting curves for each reaction. The specificity of the amplicons was verified by analyzing the melting curves and by sequencing the fragments obtained. The expression change in the target gene, relative to actin expression, was calculated using the 2<span class="elsevierStyleSup">−ΔΔCT</span> method<a class="elsevierStyleCrossRef" href="#bib0245"><span class="elsevierStyleSup">13</span></a>. The mean and SE (±) were then determined for each of the different samples.</p></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Statistical analysis</span><p id="par0085" class="elsevierStylePara elsevierViewall">Statistical analysis was conducted using the InfoStat Software<a class="elsevierStyleCrossRef" href="#bib0300"><span class="elsevierStyleSup">24</span></a>. All data were calculated as the mean<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>standard deviation. Heat map graphical representation was performed using Pheatmap package version 1.0.12 in RStudio (2022.07.1 Build 554, R environment version 4.2.1). Genes were grouped based on gene expression levels in a hierarchical clustering process.</p></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Gene accession numbers</span><p id="par0090" class="elsevierStylePara elsevierViewall">Accession numbers of all genes (mRNA) used in this study are listed in <a class="elsevierStyleCrossRefs" href="#tbl0005">Tables 1–3</a> and <a class="elsevierStyleCrossRef" href="#sec0110">S1–S3</a>.</p></span></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Results</span><p id="par0095" class="elsevierStylePara elsevierViewall">In this manuscript, a transcriptomic analysis was performed focusing on the transition from teliospores to hyphae. Total RNA from both structures of <span class="elsevierStyleItalic">T. frezii</span> was successfully extracted using the TRIzol protocol providing an acceptable RNA recovery yield and quality and was used to prepare the cDNA library for a comparative analysis of expression between both stages.</p><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Identification of <span class="elsevierStyleItalic">T. frezii</span> genes involved in the transition from teliospore to hyphae</span><p id="par0100" class="elsevierStylePara elsevierViewall">Transcription levels were compared between two <span class="elsevierStyleItalic">T. frezii</span> stages (teliospores and hyphae). RNA was obtained from teliospores from peanut pods with disease symptoms, and hyphae were obtained from the germination of these disinfected spores in PDA. Daily observation of the plates showed different structures of the fungal life cycle, as observed in <a class="elsevierStyleCrossRef" href="#fig0005">Figures 1A and B</a> where we show the formation of probasidia and basidiospores. After 10 days, 0.72<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.01% teliospores germinated, leading to the development of typical <span class="elsevierStyleItalic">T. frezii</span> mycelium. Nuclei stained with propidium iodide and observed in fluorescence microscopy revealed that 100% of the stained hyphae were monokaryotic (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>C). Under these conditions, 200 genes were differentially expressed: 134 were up-regulated, and 66 were down-regulated in the hyphal stage. Based on the RNA sequences obtained, protein sequences were deduced and analyzed by BLASTp of non-redundant protein sequences in the National Center for Biotechnology Information (NCBI)<a class="elsevierStyleCrossRef" href="#bib0360"><span class="elsevierStyleSup">36</span></a>.</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia></span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Functional grouping of differentially expressed genes</span><p id="par0105" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0010">Figure 2</a> displays the functional grouping of all the genes that exhibited differential expression in response to the germination of teliospores into hyphae. We classified those genes into: (1) cell cycle and DNA processing (CCDP); (2) cell fate (CF); (3) cell rescue, defense and virulence (CRDV); (4) detoxification involving CYP450 (DIC); (5) energy (EN); (6) interaction of nutrients and nutritional adaptation (INNA); (7) metabolism (ME); (8) protein with binding function or cofactor requirement (PBF); (9) stress, cell differentiation and biogenesis of cellular components (SDBCC); (10) transport and cellular communication (TCC); (11) transcription (TPF); (12) unclassified (UNCL) proteins and (13) involved in several metabolic pathways (SW).</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia><p id="par0110" class="elsevierStylePara elsevierViewall">From the total number of differentially expressed genes, three categories showed the greatest contribution: those involved in metabolism (<a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>; 66 genes); in transport and cellular communication (<a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>; 41 genes) and those encoding unclassified proteins (<a class="elsevierStyleCrossRef" href="#sec0110">Table S2</a>; 23 genes), with a contribution of 33%, 20.5% and 11.5% respectively.</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><elsevierMultimedia ident="tbl0010"></elsevierMultimedia><p id="par0115" class="elsevierStylePara elsevierViewall">When we analyzed genes expressed and involved in the metabolism category (<a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>), 52 up-regulated and 14 down-regulated genes were found in <span class="elsevierStyleItalic">T. frezii</span> growth from teliospores to hyphae. Among up-regulated genes in teliospores, we found the cytochrome-C peroxidase gene (MW691239) transcript increased 14.08 times in teliospores, and GAPDH transcript (MW691253), its level is 8.40-fold higher in the teliospore stage, compared to the hyphal stage. In the same group, we observed an 85.75-fold increase in haloacid dehalogenase-like hydrolase (MW691229) in <span class="elsevierStyleItalic">T. frezii</span> teliospores, and a 19.74-fold increase was measured in this stage for glutaminase A enzyme (MW691236). The enzyme 2-methylcitrate dehydratase (MW691261) was observed in <span class="elsevierStyleItalic">T. frezii</span> teliospores, the transcription level experienced a 7.12-fold increase, compared to hyphae. The gene glycerol 2-dehydrogenase (NADP(+)) (MW691268), which plays a role in glycerol catabolism, exhibited a substantial 4.87-fold increase in expression levels within <span class="elsevierStyleItalic">T. frezii</span> teliospores compared to hyphae. Similarly, the RNA expression of UTP-glucose-1-phosphate uridyltransferase (MW691270) was enhanced by 4.72-fold in teliospores of <span class="elsevierStyleItalic">T. frezii.</span></p><p id="par0120" class="elsevierStylePara elsevierViewall">Within genes down-regulated in teliospores, we found that the aldo-keto reductase yakc [NADP+] (MW691282), an enzyme from the reductase superfamily, exhibited a 1.63-fold decrease in <span class="elsevierStyleItalic">T. frezii</span> teliospores in relation to hyphae. Additionally, we observed down-regulation in two other gene expressions: Fer6, associated with ATP-binding cassette transporter protein (MW691283), showed a 1.91-fold decrease, while Fer5, linked to N6-hydroxylysine acetyl transferase (MW691284), exhibited a 2.74-fold decrease. A decrease in the expression of two additional genes was observed in teliospores of <span class="elsevierStyleItalic">T. frezii</span>. The gene related to 7 alpha-cephem-methoxylase P8 chain (MW691288) showed a significant 8.33-fold decrease, while the expression of the gene related to peroxisomal amine oxidase (copper-containing) (MW691292) was down-regulated by a substantial 18.86-fold.</p><p id="par0125" class="elsevierStylePara elsevierViewall">In the TCC category (<a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>), we observed a total of 21 up-regulated genes and 20 down-regulated genes in <span class="elsevierStyleItalic">T. frezii</span> during the transition from teliospores to hyphae. Among the up-regulated genes, we identified the aspartic protease (MW691301) gene, which exhibited a substantial 9.34-fold increase in teliospore expression. Additionally, the genes probable MET22 – protein ser/thr phosphatase (MW691299) and related to putative monooxygenase (MW691314) were also found to be up-regulated in <span class="elsevierStyleItalic">T. frezii</span> teliospores, with fold increases of 13.65 and 1.13, respectively.</p><p id="par0130" class="elsevierStylePara elsevierViewall">One of the most prominently down-regulated genes was the amino acid permease (MW691333), which exhibited a substantial 35.90-fold decrease in expression in <span class="elsevierStyleItalic">T. frezii</span> teliospores. Additionally, among the other down-regulated genes, we observed a decrease in expression for those related to acetate kinase (MW691315), to opsin-1 (MW691321), and an uncharacterized protein (um02763) (MW691322) with fold decreases of 1.59, 4.96, and 5.39, respectively. Furthermore, in relation to the autophagy-related protein (MoAtg14) (MW691320), <span class="elsevierStyleItalic">T. frezii</span> showed a significant 4.37-fold decrease in expression levels when comparing teliospores to hyphae.</p><p id="par0135" class="elsevierStylePara elsevierViewall">In the categories of CCDP, CF, CRDV, DIC, EN, INNA, PBF, SDBCC and TPF (<a class="elsevierStyleCrossRef" href="#tbl0015">Table 3</a>), 22 up-regulated genes were found (2, 0, 5, 1, 6, 1, 1, 4 and 2 respectively) and 13 down-regulated genes (4, 2, 1, 1, 0, 0, 0, 1 and 4 respectively) in <span class="elsevierStyleItalic">T. frezii</span> transition from teliospores to hyphae.</p><elsevierMultimedia ident="tbl0015"></elsevierMultimedia><p id="par0140" class="elsevierStylePara elsevierViewall">In the cell cycle and DNA processing category, two genes were shown to be up-regulated in <span class="elsevierStyleItalic">T. frezii</span> teliospores, Clb2 (b-type cyclin 2) (MW691335) and the gene related to G1/S-specific cyclin (MW691336) (fold increases of 2.2 and 1.73, respectively). In the cell rescue, defense and virulence category, the peroxisomal membrane protein (MW691347) was 7.36-fold up-regulated at RNA level in <span class="elsevierStyleItalic">T. frezii</span> teliospores. We also found a 14.27-fold increase in the Hsp70 protein (MW691345) in teliospores. With regard to the synthesis of chitin, one of the most important components of the fungal cell wall, we found that one of the genes that codes for chitin synthase (MW691346) increased 13.01-fold in teliospores, compared to the hyphal stage in <span class="elsevierStyleItalic">T. frezii</span>. In DIC category, we found just one up-regulated gene, the sterol 14 alpha-demethylase (MW691349), an essential enzyme in sterol biosynthesis, which was 5.53-fold up-regulated in <span class="elsevierStyleItalic">T. frezii</span> teliospores. In SDBCC category, some of the up-regulated genes in <span class="elsevierStyleItalic">T. frezii</span> teliospores were those related to CDC20 – cell division control protein (MW691359), to YSC84 – a protein involved in the organization of actin cytoskeleton (MW691361) and to chitinase A precursor (MW691362) (25.06, 4.99, 2.36 respectively). One of the proteins related to nutritional adaptation function, the putative neutral amino acid permease (MW691357), was found to be 9.71-fold up-regulated in <span class="elsevierStyleItalic">T. frezii</span> teliospores. In the energy category, we found the enoyl-(acyl carrier protein) reductase (MW691352), which is the last enzyme in the fatty acid elongation cycle<a class="elsevierStyleCrossRef" href="#bib0275"><span class="elsevierStyleSup">19</span></a>, its expression exhibited a 27.10-fold increase in <span class="elsevierStyleItalic">T. frezii</span> teliospores.</p><p id="par0145" class="elsevierStylePara elsevierViewall">In our analysis of down-regulated genes in teliospores, we observed significant decreases in the expression of two genes belonging to the cell fate category: Ssp1 protein kinase (MW691342) and the inhibitor of apoptosis-promoting Bax1 (MW691341)<a class="elsevierStyleCrossRef" href="#bib0225"><span class="elsevierStyleSup">9</span></a>. These genes exhibited a remarkable 18.32 and 17.37-fold reduction, respectively. The gene that encodes for putative Rer1 family protein (MW691367) was also down-regulated in teliospores.</p><p id="par0150" class="elsevierStylePara elsevierViewall">Regarding the genes that participate in multiple pathways (<a class="elsevierStyleCrossRef" href="#sec0110">Table S3</a>), a total of 26 up-regulated genes and 9 down-regulated genes were identified. Notably, probable adenosylhomocysteinase (MW691399) exhibited a substantial 6.93-fold increase, while probable SMC2 – a chromosome segregation protein (MW691373) showed a modest 1.09-fold up-regulation. In contrast, PacC – a transcription factor (MW691404), experienced a remarkable 2.48-fold down-regulation. We also found three other up-regulated genes, TPM2 – tropomyosin isoform 2 (MW691380), mitochondrial porin (MW691376), and CipC homolog (MW691370), which were 7.40, 5.00, and 8.44-fold increased, respectively.</p><p id="par0155" class="elsevierStylePara elsevierViewall">In the unclassified genes category (<a class="elsevierStyleCrossRef" href="#sec0110">Table S2</a>), during the transition from teliospores to the hyphal stage, a total of 13 up-regulated genes and 10 down-regulated genes were observed. Notably, the um10414 protein (MW691406) exhibited a significant up-regulation, with a remarkable 49.29-fold increase in gene expression. On the other hand, the genes encoding for um05276 (MW691418), um10868 (MW691421), um04575 (MW691424), and um10208 (MW691425) showed down-regulation, with their expression levels exhibiting 1.45, 1.72, 12.50, and 15.74-fold decreases, respectively.</p></span><span id="sec0075" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">qPCR analysis of selected genes</span><p id="par0160" class="elsevierStylePara elsevierViewall">To validate the reliability of the transcriptome sequencing, we selected 15 differentially expressed genes of the two <span class="elsevierStyleItalic">T. frezii</span> stages (teliospore and mycelium) for RT-qPCR analysis. The results showed that 7 of the 15 genes selected were up-regulated and 8 were down-regulated (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>). Our results were consistent with the transcriptome data. Differences were significant in all cases (<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.02) except for those related to acetate kinase gene.</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia></span></span><span id="sec0080" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0105">Discussions</span><p id="par0165" class="elsevierStylePara elsevierViewall">To date, no comprehensive investigation has been carried out to analyze the gene regulation occurring during the life cycle of <span class="elsevierStyleItalic">T. frezii</span>. Our work allowed to identify genes that are differentially expressed in two stages, teliospore and hypha. As described for other smut fungi, after teliospore germination and meiosis, haploid sporidia are formed and cell fusion of two haploid mating types leads to the development of infectious dikaryotic hyphae. This process occurs on the host plant, during the mating process between cells of opposite mating types<a class="elsevierStyleCrossRef" href="#bib0355"><span class="elsevierStyleSup">35</span></a>. However, as observed in <span class="elsevierStyleItalic">Cryptococcus neoformans</span><a class="elsevierStyleCrossRef" href="#bib0350"><span class="elsevierStyleSup">34</span></a>, a shift from teliospores to monokaryotic hyphae was found in <span class="elsevierStyleItalic">in vitro</span><span class="elsevierStyleItalic">T. frezii</span> cultures.</p><span id="sec0085" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0110">Genes that code for proteins involved in metabolism</span><p id="par0170" class="elsevierStylePara elsevierViewall">By examining the expression patterns of specific genes, we identified the cytochrome-C peroxidase gene (MW691239) where the transcript showed a remarkable 14-fold increase in teliospores. It is noteworthy that in the fungus <span class="elsevierStyleItalic">Candida albicans</span>, this protein has been targeted for antifungal treatment using quinonemethide<a class="elsevierStyleCrossRef" href="#bib0315"><span class="elsevierStyleSup">27</span></a>, which effectively reduces its expression. Hence, considering this relationship, it could be proposed as a potential alternative for controlling <span class="elsevierStyleItalic">T. frezii</span>. Furthermore, our analysis of the expression levels of the GAPDH transcript (MW691253) revealed an 8-fold increase in the teliospore stage; this finding aligns with observations made in <span class="elsevierStyleItalic">Penicillium marneffei</span><a class="elsevierStyleCrossRef" href="#bib0235"><span class="elsevierStyleSup">11</span></a> where there was an impressive 20-fold increase in the expression of this gene. This gene is described to encode an enzyme that plays a crucial role in an adhesion factor for conidial attachment. We also made a discovery regarding haloacid dehalogenase-like hydrolase (MW691229) which has been previously identified as an important virulence factor in <span class="elsevierStyleItalic">Pyrenophora teres f. teres</span><a class="elsevierStyleCrossRef" href="#bib0230"><span class="elsevierStyleSup">10</span></a>. Notably, the expression of this gene is substantially elevated in <span class="elsevierStyleItalic">T. frezii</span> teliospores. In <span class="elsevierStyleItalic">U. maydis</span>, the transcriptomic analysis revealed a 3-fold increase, while the protein analysis indicated a 2.0–2.2-fold induction<a class="elsevierStyleCrossRef" href="#bib0195"><span class="elsevierStyleSup">3</span></a>. Conversely, the glutaminase A enzyme (MW691236) exhibits a striking 85-fold increase in RNA levels in <span class="elsevierStyleItalic">U. maydis</span>, compared to a near 20-fold increase in <span class="elsevierStyleItalic">T. frezii</span> teliospores<a class="elsevierStyleCrossRef" href="#bib0195"><span class="elsevierStyleSup">3</span></a>. Furthermore, the enzyme 2-methylcitrate dehydratase (MW691261) exhibited a 1.81-fold increase at the protein level in <span class="elsevierStyleItalic">U. maydis</span>, coinciding with a nearly 7-fold increase in transcription levels in <span class="elsevierStyleItalic">T. frezii</span> teliospores<a class="elsevierStyleCrossRef" href="#bib0265"><span class="elsevierStyleSup">17</span></a>. Glycerol 2-dehydrogenase (NADP(+)) (MW691268) has been identified as a key player in glycerol catabolism under microaerobic conditions in <span class="elsevierStyleItalic">U. maydis</span>. Interestingly, in <span class="elsevierStyleItalic">T. frezii</span> teliospores, its expression level showed a significant nearly 5-fold increase compared to hyphae. This notable increase in protein expression was also observed in <span class="elsevierStyleItalic">U. maydis</span><a class="elsevierStyleCrossRef" href="#bib0195"><span class="elsevierStyleSup">3</span></a>. Additionally, in our study, we found a consistent 5-fold increase in the expression of UTP-glucose-1-phosphate uridyltransferase (MW691270) at the protein level both in <span class="elsevierStyleItalic">U. maydis</span><a class="elsevierStyleCrossRef" href="#bib0195"><span class="elsevierStyleSup">3</span></a> and <span class="elsevierStyleItalic">T. frezii</span> teliospores.</p><p id="par0175" class="elsevierStylePara elsevierViewall">Aldo-keto reductase yakc [NADP+] (MW691282), nearly experienced a 2-fold decrease in <span class="elsevierStyleItalic">T. frezii</span> teliospores in relation to hyphae. This enzyme from the reductase superfamily, also showed a 1.97-fold decrease (at protein level) in <span class="elsevierStyleItalic">U. maydis</span><a class="elsevierStyleCrossRef" href="#bib0265"><span class="elsevierStyleSup">17</span></a>. Both Fer6, which is associated with ATP-binding cassette transporter protein (MW691283), and Fer5, linked to N6-hydroxylysine acetyl transferase (MW691284), exhibited approximately a 2-fold downregulation in <span class="elsevierStyleItalic">T. frezii</span> teliospores compared to hyphae. In contrast, in <span class="elsevierStyleItalic">U. maydis</span>, the same genes demonstrated a much more pronounced down-regulation with 80.5 and 165.4-fold decrease (RNA) respectively. A decrease in the expression of those related to 7 alpha-cephem-methoxylase P8 chain (MW691288) was observed both in teliospores of <span class="elsevierStyleItalic">T. frezii</span> and of <span class="elsevierStyleItalic">U. maydis</span> (8 and 2 times, respectively)<a class="elsevierStyleCrossRef" href="#bib0270"><span class="elsevierStyleSup">18</span></a>. In the same article, the expression of those related to peroxisomal amine oxidase (copper-containing) (MW691292) was found to be down-regulated by 61-fold in <span class="elsevierStyleItalic">U. maydis</span><a class="elsevierStyleCrossRef" href="#bib0270"><span class="elsevierStyleSup">18</span></a> and we found a nearly 19-fold decrease in teliospores of <span class="elsevierStyleItalic">T. frezii</span>.</p></span><span id="sec0090" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0115">Genes involved in transport and cellular communication</span><p id="par0180" class="elsevierStylePara elsevierViewall">During our gene expression analysis focused on proteins involved in transport and cell communication processes, we made a remarkable observation regarding the expression of aspartic protease (MW691301), known as a protein expressed during the early stages of sunflower cotyledon infection by <span class="elsevierStyleItalic">Sclerotinia sclerotiorum</span><a class="elsevierStyleCrossRef" href="#bib0285"><span class="elsevierStyleSup">21</span></a>. In <span class="elsevierStyleItalic">T. frezii</span>, in the teliospore stage, the expression of this enzyme exhibited a significant 9.34-fold increase. Notably, in <span class="elsevierStyleItalic">Paracoccidioides brasiliensis</span> fungi, during the infection process, this gene was up-regulated by 9.5-fold<a class="elsevierStyleCrossRef" href="#bib0205"><span class="elsevierStyleSup">5</span></a>, suggesting its potential importance in the infection process. Comparisons in the expression levels of several genes with their orthologues of <span class="elsevierStyleItalic">U. maydis</span> are compiled in the work of Ruiz-Herrera et al.<a class="elsevierStyleCrossRef" href="#bib0270"><span class="elsevierStyleSup">18</span></a> Among these comparisons, it was observed that the genes encoding for probable MET22 – protein ser/thr phosphatase (MW691299) and related to putative monooxygenase (MW691314) were up-regulated in both <span class="elsevierStyleItalic">T. frezii</span> and <span class="elsevierStyleItalic">U. maydis</span>, showing 13.65 and 1.13-fold changes in <span class="elsevierStyleItalic">T. frezii</span>, and 2.3 and 2.5 in <span class="elsevierStyleItalic">U. maydis</span>, respectively.</p><p id="par0185" class="elsevierStylePara elsevierViewall">In terms of down-regulated genes, the authors reported that the genes related to acetate kinase (MW691315), related to opsin-1 (MW691321), and uncharacterized protein (um02763) (MW691322) exhibited down-regulation in the same direction in <span class="elsevierStyleItalic">U. maydis</span>. The fold changes observed were 1.59, 4.96, and 5.39 in <span class="elsevierStyleItalic">T. frezii</span>, and 10.9, 5, and 114 in <span class="elsevierStyleItalic">U. maydis</span>, respectively. One of the most significant down-regulated genes identified was the amino acid permease (MW691333), which plays a fundamental role in fluconazole resistance and is the target of plant secondary metabolites with antifungal properties. In <span class="elsevierStyleItalic">U. maydis</span>, it exhibited specific expression during budding<a class="elsevierStyleCrossRef" href="#bib0210"><span class="elsevierStyleSup">6</span></a>, while in <span class="elsevierStyleItalic">T. frezii</span> hyphae, its expression showed a 36-fold increase. With regard to the autophagy-related protein (MoAtg14) (MW691320), a study conducted by Liu et al.<a class="elsevierStyleCrossRef" href="#bib0240"><span class="elsevierStyleSup">12</span></a>, demonstrated that the deletion of this protein in <span class="elsevierStyleItalic">Magnaporthe oryzae</span> resulted in a complete loss of virulence and conidiation problems. However, contrary to our expectations, <span class="elsevierStyleItalic">T. frezii</span>, exhibited a decreased 4.37-fold expression during the fungi transition.</p></span><span id="sec0095" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0120">Genes that code for proteins involved in CCDP, CF, CRDV, DIC, EN, INNA, PBF, SDBCC and TPF</span><p id="par0190" class="elsevierStylePara elsevierViewall">In the cell cycle and DNA processing category, only two genes were shown to be up-regulated during the transition in both <span class="elsevierStyleItalic">T. frezii</span> and <span class="elsevierStyleItalic">U. maydis</span>, Clb2 (b-type cyclin 2) (MW691335) and those related to G1/S-specific cyclin (MW691336)<a class="elsevierStyleCrossRef" href="#bib0270"><span class="elsevierStyleSup">18</span></a>.</p><p id="par0195" class="elsevierStylePara elsevierViewall">In the cell rescue, defense, and virulence category, the peroxisomal membrane protein (MW691347) exhibited a significant up-regulation of nearly 7-fold in <span class="elsevierStyleItalic">T. frezii</span>. Similarly, at the protein level, it showed a 2.31-fold up-regulation in <span class="elsevierStyleItalic">U. maydis</span><a class="elsevierStyleCrossRef" href="#bib0265"><span class="elsevierStyleSup">17</span></a>. Another up-regulated gene encoding for the Hsp70 protein (MW691345) is considered essential for many cellular processes and plays a major role in various stress conditions. Its synthesis is induced by heat shock stress, as observed in <span class="elsevierStyleItalic">U. maydis</span> with a 5-fold increase in heating conditions<a class="elsevierStyleCrossRef" href="#bib0220"><span class="elsevierStyleSup">8</span></a>. It has also been observed to be up-regulated during plant pathogenesis<a class="elsevierStyleCrossRef" href="#bib0340"><span class="elsevierStyleSup">32</span></a>. Concerning the synthesis of chitin, we found that one of the genes that codes for chitin synthase (MW691346)<a class="elsevierStyleCrossRef" href="#bib0330"><span class="elsevierStyleSup">30</span></a> is 13-fold up-regulated in teliospores of <span class="elsevierStyleItalic">T. frezii</span>. Interestingly, this gene has been previously reported to be exclusive to the hyphae stage in the fungus <span class="elsevierStyleItalic">Mucor circinelloides</span><a class="elsevierStyleCrossRef" href="#bib0250"><span class="elsevierStyleSup">14</span></a>, highlighting its differential expression during the transition process. These findings support the existence of a multigene chitin synthase family, where expression varies according to the fungal stage. This suggests that different chitin synthase activities may play distinct roles in the dimorphic growth of <span class="elsevierStyleItalic">M. circinelloides</span>.</p><p id="par0200" class="elsevierStylePara elsevierViewall">Another up-regulated gene expressed in <span class="elsevierStyleItalic">T. frezii</span> is sterol 14 alpha-demethylase (MW691349), which participates in sterol biosynthesis in eukaryotes and is a clinical target for antifungal azoles, and was also up-regulated in <span class="elsevierStyleItalic">U. maydis</span><a class="elsevierStyleCrossRef" href="#bib0270"><span class="elsevierStyleSup">18</span></a> (2.7 times). The authors also reported up-regulation of genes related to CDC20 – cell division control protein (MW691359), YSC84 (MW691361) and chitinase A precursor (MW691362) in <span class="elsevierStyleItalic">U. maydis</span><a class="elsevierStyleCrossRef" href="#bib0270"><span class="elsevierStyleSup">18</span></a> (with 2.5, 2.0, 6.7-fold increases, respectively). A notable virulence factor found in various fungi, including <span class="elsevierStyleItalic">Saccharomyces cerevisiae</span> and <span class="elsevierStyleItalic">Candida albicans</span>, is associated with a neutral amino acid permease (MW691357)<a class="elsevierStyleCrossRef" href="#bib0260"><span class="elsevierStyleSup">16</span></a>. Research reveals that these fungi possess twenty-four and twenty-seven genes, respectively, that encode for this protein, further contributing to their virulence.</p><p id="par0205" class="elsevierStylePara elsevierViewall">The enoyl-(acyl carrier protein) reductase (ENRs), an enzyme that belongs to the energy category, was remarkably up-regulated in teliospores. This is interesting because this protein catalyzes the last step of the elongation cycle in the synthesis of fatty acids, whose biosynthesis is essential for survival in mammals, plants, fungi and bacteria<a class="elsevierStyleCrossRef" href="#bib0275"><span class="elsevierStyleSup">19</span></a>. The growing interest in ENRs is mainly due to the fact that a variety of antimicrobial compounds, such as triclosan, are shown to specifically target their activity.</p><p id="par0210" class="elsevierStylePara elsevierViewall">The Ssp1 protein kinase (MW691342), identified as one of the down-regulated genes in the CF category, plays a crucial role in facilitating the reorganization of the actin cytoskeleton following osmotic stress. In <span class="elsevierStyleItalic">T. frezii</span>, its expression increased by 18-fold in the hyphal stage compared to the teliospore stage. However, in <span class="elsevierStyleItalic">U. maydis</span>, during the transition from the budding to the filamentous stage, this increase was comparatively lower, at only 4-fold<a class="elsevierStyleCrossRef" href="#bib0210"><span class="elsevierStyleSup">6</span></a>. Putative Rer1 family protein (MW691367) is involved in the retrieval of endoplasmic reticulum membrane proteins from the early Golgi compartment. In <span class="elsevierStyleItalic">T. frezii</span>, this gene expression was 5.13-fold decreased in teliospores, while in <span class="elsevierStyleItalic">M. haptotylum</span> knobs/mycelium transition, the down-expression was 1.36<a class="elsevierStyleCrossRef" href="#bib0185"><span class="elsevierStyleSup">1</span></a>.</p><p id="par0215" class="elsevierStylePara elsevierViewall">Martínez-Soto et al.<a class="elsevierStyleCrossRef" href="#bib0270"><span class="elsevierStyleSup">18</span></a>, found many genes differentially expressed in the transition between spore and hyphae in <span class="elsevierStyleItalic">U. maydis</span>, particularly, three genes, two of which were up-regulated and one was down-regulated: probable adenosylhomocysteinase (MW691399), probable SMC2 – chromosome segregation protein (MW691373) and pacC – transcription factor pacC (MW691404) (2 (up); 10.3 (up) and 9.2 (down) fold, respectively). <span class="elsevierStyleItalic">T. frezii</span> orthologues genes were also differentially expressed and in the same direction (up- or down-regulated). Finally, three other genes were up-regulated in the <span class="elsevierStyleItalic">U. maydis</span> dimorphism<a class="elsevierStyleCrossRef" href="#bib0265"><span class="elsevierStyleSup">17</span></a>, TPM2 (tropomyosin isoform 2 (MW691380), a component of fungal filaments), mitochondrial porin (MW691376) (which allows the passage of small molecules across the mitochondrial outer membrane and is involved in complex interactions regulating organelle and cellular metabolism) and CipC homolog (MW691370) (5.95; 2.25 and 14.04-fold at protein level, respectively). Coincidentally, we observed that the orthologues of these genes in <span class="elsevierStyleItalic">T. frezii</span> were also up-regulated.</p><p id="par0220" class="elsevierStylePara elsevierViewall">At least five uncharacterized proteins were differentially expressed in both <span class="elsevierStyleItalic">T. frezii</span> and <span class="elsevierStyleItalic">U. maydis</span>. In the transition of <span class="elsevierStyleItalic">U. maydis</span>, the variation of the transcripts of the um10414 protein was 3.5-fold increased; a trend that was also observed in its orthologous protein in <span class="elsevierStyleItalic">T. frezii</span>. In contrast, four other proteins, um05276, um10868, um04575 and um10208 displayed down-regulation with fold changes of 11.7; 2.7; 2.6 and 4.7-fold decrease, respectively. Similarly, the transcripts levels of their orthologous proteins in <span class="elsevierStyleItalic">T. frezii</span> (MW691418, MW691421, MW691424 and MW691425) were also down-regulated.</p><p id="par0225" class="elsevierStylePara elsevierViewall">In conclusion, many cellular processes are involved in the morphological shifts from teliospores to hyphae of <span class="elsevierStyleItalic">T. frezii</span>, which makes it difficult to fully understand the intricacies of this complex process. For this reason, different approaches are necessary before we can explain this process at a molecular level. Consequently, we believe that our comprehensive analysis of the entire transcriptome during this transition serves as a fundamental step toward understanding this phenomenon and may lay the foundation for future studies of the molecular processes that occur during infection.</p></span></span><span id="sec0100" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0125">Conflicts of interest</span><p id="par0230" class="elsevierStylePara elsevierViewall">The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:12 [ 0 => array:3 [ "identificador" => "xres2169775" "titulo" => "Highlights" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:3 [ "identificador" => "xres2169776" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 2 => array:2 [ "identificador" => "xpalclavsec1839920" "titulo" => "Keywords" ] 3 => array:3 [ "identificador" => "xres2169774" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0015" ] ] ] 4 => array:2 [ "identificador" => "xpalclavsec1839919" "titulo" => "Palabras clave" ] 5 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 6 => array:3 [ "identificador" => "sec0010" "titulo" => "Materials and methods" "secciones" => array:9 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Collection, isolation and cultivation of Thecaphora frezii" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Nuclear staining of Thecaphora frezii hyphae" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "RNA extraction" ] 3 => array:2 [ "identificador" => "sec0030" "titulo" => "Library preparation and RNA-Seq" ] 4 => array:2 [ "identificador" => "sec0035" "titulo" => "RNA-Seq data analysis" ] 5 => array:2 [ "identificador" => "sec0040" "titulo" => "T. frezii differentially expressed genes from teliospore to hyphal stage" ] 6 => array:2 [ "identificador" => "sec0045" "titulo" => "qPCR analysis of selected genes" ] 7 => array:2 [ "identificador" => "sec0050" "titulo" => "Statistical analysis" ] 8 => array:2 [ "identificador" => "sec0055" "titulo" => "Gene accession numbers" ] ] ] 7 => array:3 [ "identificador" => "sec0060" "titulo" => "Results" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0065" "titulo" => "Identification of T. frezii genes involved in the transition from teliospore to hyphae" ] 1 => array:2 [ "identificador" => "sec0070" "titulo" => "Functional grouping of differentially expressed genes" ] 2 => array:2 [ "identificador" => "sec0075" "titulo" => "qPCR analysis of selected genes" ] ] ] 8 => array:3 [ "identificador" => "sec0080" "titulo" => "Discussions" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0085" "titulo" => "Genes that code for proteins involved in metabolism" ] 1 => array:2 [ "identificador" => "sec0090" "titulo" => "Genes involved in transport and cellular communication" ] 2 => array:2 [ "identificador" => "sec0095" "titulo" => "Genes that code for proteins involved in CCDP, CF, CRDV, DIC, EN, INNA, PBF, SDBCC and TPF" ] ] ] 9 => array:2 [ "identificador" => "sec0100" "titulo" => "Conflicts of interest" ] 10 => array:2 [ "identificador" => "xack753041" "titulo" => "Acknowledgements" ] 11 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2023-01-30" "fechaAceptado" => "2023-10-31" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1839920" "palabras" => array:5 [ 0 => "Teliospore" 1 => "Hyphae" 2 => "Transition" 3 => "<span class="elsevierStyleItalic">Thecaphora frezii</span>" 4 => "Peanut" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1839919" "palabras" => array:5 [ 0 => "Teliospora" 1 => "Hifas" 2 => "Cambio de estadio" 3 => "<span class="elsevierStyleItalic">Thecaphora frezii</span>" 4 => "Maní" ] ] ] ] "tieneResumen" => true "highlights" => array:2 [ "titulo" => "Highlights" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall"><ul class="elsevierStyleList" id="lis0005"><li class="elsevierStyleListItem" id="lsti0005"><span class="elsevierStyleLabel">•</span><p id="par0005" class="elsevierStylePara elsevierViewall">The transition of <span class="elsevierStyleItalic">Thecaphora frezii</span> from teliospore to hyphae is important in the life cycle.</p></li><li class="elsevierStyleListItem" id="lsti0010"><span class="elsevierStyleLabel">•</span><p id="par0010" class="elsevierStylePara elsevierViewall">Analysis of RNAseq data made possible to observe genes up and down-regulated in fungal transition.</p></li><li class="elsevierStyleListItem" id="lsti0015"><span class="elsevierStyleLabel">•</span><p id="par0015" class="elsevierStylePara elsevierViewall">Differential gene expressions can contribute to understand <span class="elsevierStyleItalic">Thecaphora frezii</span> biology.</p></li></ul></p></span>" ] "resumen" => array:2 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Peanuts (<span class="elsevierStyleItalic">Arachis hypogaea</span> L.) are among the most important leguminous crops in Argentina. During the growing season, they are frequently attacked by fungal diseases, including <span class="elsevierStyleItalic">Thecaphora frezii</span>. The spores of <span class="elsevierStyleItalic">T. frezii</span> are structures that confer resistance to this phytopathogen. The transition from teliospore to hypha is a characteristic process of some fungi, which is essential for completing their life cycle. Using the transcriptomes of teliospores and hyphae of <span class="elsevierStyleItalic">T. frezii</span>, we aimed to identify genes that were differentially expressed during this transition, and we found 134 up-regulated and 66 down-regulated genes, which would participate in different cellular processes such as: (a) cell cycle and DNA processing; (b) cell fate; (c) rescue, defense and cellular virulence; (d) detoxification by CYP450; (e) energy; (f) nutrient interaction and nutritional adaptation; (g) metabolism; (g) proteins with binding functions or cofactor requirements; (h) stress, cell differentiation and biogenesis of cell components; and (i) transport, cell communication and transcription. The identification of genes in <span class="elsevierStyleItalic">T. frezii</span> and their expression levels during different stages of differentiation could contribute to our understanding of the biological mechanisms in this fungus.</p></span>" ] "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0015" class="elsevierStyleSection elsevierViewall"><p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">El maní (<span class="elsevierStyleItalic">Arachis hypogaea</span> L.) es uno de los cultivos leguminosos más importantes de Argentina. Durante el ciclo de siembra, es atacado frecuentemente por enfermedades de origen fúngico, entre ellos por <span class="elsevierStyleItalic">Thecaphora frezii</span>, cuyas esporas son estructuras que le confieren resistencia a este fitopatógeno. El pasaje de teliospora a hifa es un proceso característico de algunos hongos, siendo fundamental para que el ciclo de vida se complete. A partir de los transcriptomas de las teliosporas e hifas de <span class="elsevierStyleItalic">Thecaphora frezii</span> nos propusimos identificar aquellos genes que estuvieran diferencialmente expresados en este pasaje y encontramos 134 <span class="elsevierStyleItalic">up</span>-regulados y 66 <span class="elsevierStyleItalic">down</span>-regulados, los cuales participarían en diferentes procesos celulares como son a) ciclo mitótico y procesamiento del ADN; b) destino de la célula; c) rescate, defensa y virulencia celular; d) desintoxicación mediada por <span class="elsevierStyleItalic">CYP450</span>; e) energía; f) interacción de nutrientes y adaptación nutricional; g) metabolismo; g) proteínas con funciones de unión o requerimiento de cofactores; h) estrés, diferenciación celular y biogénesis de componentes celulares; i) transporte, comunicación de las células y transcripción. La identificación de genes de <span class="elsevierStyleItalic">Thecaphora frezii</span> y sus niveles de expresión en distintos estadios de diferenciación podrían contribuir al conocimiento de mecanismos biológicos presentes en este hongo.</p></span>" ] ] "NotaPie" => array:1 [ 0 => array:3 [ "etiqueta" => "1" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Both authors contributed equally to this work.</p>" "identificador" => "fn0005" ] ] "apendice" => array:1 [ 0 => array:1 [ "seccion" => array:1 [ 0 => array:4 [ "apendice" => "<p id="par0245" class="elsevierStylePara elsevierViewall">The following are the supplementary data to this article:<elsevierMultimedia ident="upi0005"></elsevierMultimedia><elsevierMultimedia ident="upi0010"></elsevierMultimedia><elsevierMultimedia ident="upi0015"></elsevierMultimedia></p>" "etiqueta" => "Appendix A" "titulo" => "Supplementary data" "identificador" => "sec0110" ] ] ] ] "multimedia" => array:9 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 383 "Ancho" => 1407 "Tamanyo" => 52393 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Germination of teliospores in PDA plates. (A) Germination and hyphae growth from teliospore after 5 days of incubation. (B) Formation of mycelium after 10 days of incubation. (C) Nuclear stain of hyphae with propidium iodide. This dye binds to the genetic material and stains it in red. The addition of RNAse in the staining process removes the RNA allowing the visualization of the nucleus only.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1361 "Ancho" => 1681 "Tamanyo" => 138962 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Functional gene categorization (%). (1) Cell cycle and DNA processing (CCDP); (2) cell fate (CF); (3) cell rescue, defense and virulence (CRDV); (4) detoxification involving CYP450 (DIC); (5) energy (EN); (6) interaction of nutrients and nutritional adaptation (INNA); (7) metabolism (ME); (8) protein with binding function or cofactor requirement (PBF); (9) stress, cell differentiation and biogenesis of cellular components (SDBCC); (10) transport and cellular communication (TCC); (11) transcription (TPF); (12) unclassified (UNCL) proteins and (13) implicated in several metabolic pathways (SW).</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1757 "Ancho" => 3023 "Tamanyo" => 282321 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Expression of some differentially expressed genes quantified by real-time PCR. Heatmap is showing differential gene expression between hyphae (H1, H2, and H3 replicates) and teliospores (T1, T2, and T3 replicates). Red and blue shadings represent higher and lower relative expression levels, respectively. Genes have been grouped based on their pattern of gene expression. Actin transcript was used as a reference gene for expression normalization.</p>" ] ] 3 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at1" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">T: teliospore; H: hypha.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">GenBank accession number \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Gene description \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Fold changeT<span class="elsevierStyleHsp" style=""></span>→<span class="elsevierStyleHsp" style=""></span>H (times) \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691228 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Uricase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">92.50 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691229 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Haloacid dehalogenase-like hydrolase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">85.75 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691230 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative dihydroxy-acid dehydratase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">69.27 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691231 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Catalase/peroxidase HPI \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">60.44 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691232 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Related to ADH6 – NADPH-dependent alcohol dehydrogenase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">51.26 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691233 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative formate dehydrogenase (NAD+) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">32.16 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691234 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative phosphomannomutase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">31.51 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691235 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative sterol C-24 reductase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23.02 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691236 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Glutaminase A \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">19.74 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691237 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">K homology RNA-binding domain \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">17.49 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691238 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative adenylosuccinate synthase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15.40 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691239 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cytochrome-c peroxidase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">14.08 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691240 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Acetyl-CoA synthetase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">14.03 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691241 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Related to deacetylase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">13.51 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691242 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Related to b2-aldehyde-forming enzyme \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">13.11 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691243 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Glycosyltransferase family 1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">11.28 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691244 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative alanine/arginine aminopeptidase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">11.09 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691245 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Short chain dehydrogenase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10.75 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691246 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative glycine decarboxylase subunit P \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10.27 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691247 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative inositol polyphosphate kinase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9.95 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691248 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Glycosyltransferase family 20 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9.02 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691249 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">PTPLA-domain-containing protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9.00 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691250 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Nucleotide-binding domain of the sugar kinase/HSP70/actin \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8.84 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691251 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">FBP1 (fructose-1,6-bisphosphatase 1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8.76 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691252 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative bifunctional (2E,6E)-farnesyl diphosphate synthase/dimethylallyltranstransferase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8.75 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691253 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Glyceraldehyde 3-phosphate dehydrogenase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8.40 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691254 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative bifunctional purine biosynthetic protein ade1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8.16 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691255 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Asparagine synthase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.99 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691256 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CoA-transferase family III \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.88 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691257 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative adenylyl-sulfate kinase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.72 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691258 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative pre-mRNA splicing factor prp1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.52 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691259 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative histidine biosynthesis trifunctional protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.42 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691260 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative xylulokinase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.31 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691261 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2-Methylcitrate dehydratase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.12 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691262 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Aspartate aminotransferase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.78 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691263 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative triose-phosphate isomerase TPI1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.29 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691264 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative molybdenum cofactor synthesis protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.27 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691265 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3-Hydroxy-3-methylglutaryl-CoA lyase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.21 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691266 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5-Formyltetrahydrofolate cyclo-ligase family \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.06 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691267 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.06 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691268 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Glycerol 2-dehydrogenase (NADP(+)) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.87 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691269 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Probable UDP-galactopyranose mutase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.87 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691270 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">UTP-glucose-1-phosphate uridyltransferase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.72 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691271 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative fumarate reductase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.48 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691272 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Probable LYS12 (homo-isocitrate dehydrogenase) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.43 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691273 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative aspartate aminotransferase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.42 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691274 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Conserved hypothetical protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.41 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691275 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GLN1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.08 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691276 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">HOM6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.57 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691277 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Related to betaine lipid synthase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.37 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691278 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Uncharacterized protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.31 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691279 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ILV5-ketol-acid reductoisomerase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.27 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691280 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Uncharacterized protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.04 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691281 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Fatty acid elongase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.56 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691282 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Aldo-keto reductase yakc [NADP+] \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.63 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691283 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Fer6 – related to ATP-binding cassette transporter protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.91 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691284 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Fer5 – related to N6-hydroxylysine acetyltransferase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.74 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691285 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5′-AMP-activated protein kinase catalytic subunit alpha-2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.21 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691286 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Peptide methionine sulfoxide reductase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.62 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691287 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Inositol phospholipid synthesis and fat-storage-inducing TM \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8.56 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691288 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Related to 7alpha-cephem-methoxylase P8 chain \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8.33 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691289 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative carboxyl methyl esterase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10.48 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691290 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">UDP-glucose 6-dehydrogenase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">11.96 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691291 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Sodium-independent sulfate anion transporter \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">16.30 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691292 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Related to peroxisomal amine oxidase (copper-containing) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">18.86 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691293 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Pyridoxal 5′-phosphate synthase lyase subunit PdxS \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">20.21 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3573983.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Genes involved in metabolism.</p>" ] ] 4 => array:8 [ "identificador" => "tbl0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at2" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">T: teliospore; H: hypha.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">GenBank accession number \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Gene description \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Fold change T T<span class="elsevierStyleHsp" style=""></span>→<span class="elsevierStyleHsp" style=""></span>H (times) \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691294 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Mitogen-activated serine/threonine-protein kinase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">65.56 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691295 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Related to aquaporin \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">25.79 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691296 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative monosaccharide transporter \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">17.53 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691297 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative aldehyde dehydrogenase family 7 member A1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">16.45 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691298 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative nicotinate-nucleotide diphosphorylase (carboxylation) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">16.08 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691299 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Probable MET22 – protein ser/thr phosphatase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">13.65 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691300 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Sugar transport protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10.66 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691301 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Aspartic protease \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9.34 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691302 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cation efflux family \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8.28 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691303 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Mitochondrial carrier protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.84 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691304 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Mitochondrial carrier protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.82 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691305 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Transmembrane amino acid transporter protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.36 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691306 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative heat shock protein Hsp88 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.24 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691307 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Mitochondrial matrix Mmp37 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.46 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691308 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Conserved hypothetical ATP-binding protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.34 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691309 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Hexose transporter \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.29 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691310 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Major facilitator superfamily \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.27 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691311 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ABC transporter \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.25 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691312 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Uncharacterized protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.37 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691313 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Rac1 GTP-binding protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.00 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691314 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Related to putative monooxygenase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.13 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691315 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Related to acetate kinase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.59 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691316 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Related to MDR1 – Mac1p interacting protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.55 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691317 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Probable monosaccharide transporter \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.70 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691318 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Uncharacterized protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.80 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691319 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Choline transporter-like protein 2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.22 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691320 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Autophagy-related protein 8 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.37 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691321 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Related to opsin-1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.96 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691322 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Uncharacterized protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.39 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691323 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SNF7 family protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.88 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691324 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ESCRT-III subunit protein SNF7 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.10 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691325 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">RasGEF domain \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.47 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691326 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Derlin-2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.49 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691327 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative ATP-binding cassette glutathione S-conjugate transporter \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.80 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691328 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative GTP-binding protein ypt5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8.36 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691329 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative vacuolar ATP synthase subunit D \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8.99 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691330 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative iron-Sulfur cluster nifU-like protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">16.20 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691331 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Lysine-specific permease \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">17.02 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691332 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Plasma membrane P-type ATPase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">19.67 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691333 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Amino acid permease \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">35.90 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691334 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Probable ZRT2 – zinc transporter II \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">37.81 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3573985.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Genes involved in transport and cellular communication.</p>" ] ] 5 => array:8 [ "identificador" => "tbl0015" "etiqueta" => "Table 3" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at3" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">CCDP: cell cycle and DNA processing; CF: cell fate; CRDV: cell rescue, defense and virulence; DIC: detoxification involving CYP450; EN: energy; INNA: interaction of nutrients and nutritional adaptation; PBF: protein with binding function or cofactor requirement; SDBCC: stress, cell differentiation and biogenesis of cellular components; TPF: transcription; T: teliospore; H: hypha.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Category \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">GenBank accession number \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Gene description \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Fold change T<span class="elsevierStyleHsp" style=""></span>→<span class="elsevierStyleHsp" style=""></span>H (times) \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CCDP \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691335 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Clb2 (b-type cyclin 2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.20 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CCDP \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691336 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Related to G1/S-specific cyclin \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.73 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CCDP \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691337 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Related to DAD4 – outer kinetochore protein (part of Dam1 complex) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.96 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CCDP \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691338 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Hus1-like protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.97 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CCDP \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691339 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">DNA repair protein RAD51 homolog 1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8.22 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CCDP \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691340 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative fimbrin \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9.37 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CF \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691341 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Inhibitor of apoptosis-promoting Bax1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">17.37 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CF \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691342 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative dioxygenase Ssp1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">18.32 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CRDV \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691343 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">lon protease homolog 2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">36.83 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CRDV \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691344 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative chaperone ATPase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">27.49 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CRDV \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691345 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">HSP70 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">14.27 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CRDV \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691346 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Chitin synthase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">13.01 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CRDV \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691347 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Peroxisomal membrane protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.36 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CRDV \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691348 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Taurine catabolism dioxygenase TauD \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">29.24 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">DIC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691349 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Erg11 (sterol 14 alpha-demethylase) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.53 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">DIC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691350 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cytochrome P450 94A1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.97 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">EN \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691351 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative glutamate dehydrogenase, NAD(+)-specific \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">47.90 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">EN \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691352 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Enoyl-(acyl carrier protein) reductase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">27.10 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">EN \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691353 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Long-chain acyl-CoA synthetase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">21.26 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">EN \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691354 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative carnitine O-acetyltransferase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">11.96 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">EN \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691355 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative acetyl-CoA C-acyltransferase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9.46 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">EN \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691356 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative acetyl-CoA C-acyltransferase precursor \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8.42 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">INNA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691357 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative neutral amino acid permease \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9.74 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">PBF \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691358 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Methylcrotonyl-CoA carboxylase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">12.42 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SDBCC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691359 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Related to CDC20 (cell division control protein) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">25.06 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SDBCC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691360 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Root hair defective 3 GTP-binding protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.48 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SDBCC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691361 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Related to YSC84 (protein involved in the organization of actin cytoskeleton) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.99 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SDBCC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691362 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Related to chitinase A precursor \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.36 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SDBCC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691363 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Related to GTP-binding protein Rab5c \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.98 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TPF \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691364 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">S8 family peptidase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">13.87 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TPF \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691365 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Serine carboxypeptidase S28 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">11.02 UP \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TPF \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691366 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">tRNA methyl transferase \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.53 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TPF \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691367 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Putative Rer1 family protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.13 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TPF \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691368 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Uncharacterized protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.69 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TPF \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MW691369 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Peptidase family M28 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">129.88 DOWN \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3573984.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Genes involved in CCDP, CF, CRDV, DIC, EN, INNA, PBF, SDBCC and TPF.</p>" ] ] 6 => array:5 [ "identificador" => "upi0005" "tipo" => "MULTIMEDIAECOMPONENTE" "mostrarFloat" => false "mostrarDisplay" => true "Ecomponente" => array:2 [ "fichero" => "mmc1.doc" "ficheroTamanyo" => 12994 ] ] 7 => array:5 [ "identificador" => "upi0010" "tipo" => "MULTIMEDIAECOMPONENTE" "mostrarFloat" => false "mostrarDisplay" => true "Ecomponente" => array:2 [ "fichero" => "mmc2.doc" "ficheroTamanyo" => 14074 ] ] 8 => array:5 [ "identificador" => "upi0015" "tipo" => "MULTIMEDIAECOMPONENTE" "mostrarFloat" => false "mostrarDisplay" => true "Ecomponente" => array:2 [ "fichero" => "mmc3.doc" "ficheroTamanyo" => 16748 ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:36 [ 0 => array:3 [ "identificador" => "bib0185" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Comparison of gene expression in trap cells and vegetative hyphae of the nematophagous fungus <span class="elsevierStyleItalic">Monacrosporium haptotylum</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "D. Ahrén" 1 => "M. Tholander" 2 => "C. Fekete" 3 => "B. Rajashekar" 4 => "E. Friman" 5 => "T. Johansson" 6 => "A. Tunlid" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1099/mic.0.27485-0" "Revista" => array:5 [ "tituloSerie" => "Microbiology (N Y)" "fecha" => "2005" "volumen" => "151" "paginaInicial" => "789" "paginaFinal" => "803" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0190" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "First draft genome of <span class="elsevierStyleItalic">Thecaphora frezii</span>, causal agent of peanut smut disease" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:9 [ 0 => "R.S. Arias" 1 => "C. Conforto" 2 => "V.A. Orner" 3 => "E.J. Carloni" 4 => "J.H. Soave" 5 => "A.N. Massa" 6 => "M.C. Lamb" 7 => "N. Bernardi-Lima" 8 => "A.M. Rago" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/s12863-023-01113-w" "Revista" => array:4 [ "tituloSerie" => "BMC Genom Data" "fecha" => "2023" "volumen" => "24" "paginaInicial" => "9" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0195" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Proteomic analysis of dimorphic transition in the phytopathogenic fungus <span class="elsevierStyleItalic">Ustilago maydis</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M. Böhmer" 1 => "T. Colby" 2 => "C. Böhmer" 3 => "A. Bräutigam" 4 => "J. Schmidt" 5 => "M. Bölker" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/pmic.200600900" "Revista" => array:6 [ "tituloSerie" => "Proteomics" "fecha" => "2007" "volumen" => "7" "paginaInicial" => "675" "paginaFinal" => "685" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17340586" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0200" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "<span class="elsevierStyleItalic">Thecaphora frezii</span> n. sp., parásita de <span class="elsevierStyleItalic">Arachis</span> sp" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J.M. Carranza" 1 => "J.C. Lindquist" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Bol Soc Argent Bot" "fecha" => "1962" "volumen" => "10" "paginaInicial" => "11" "paginaFinal" => "18" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0205" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Secreted aspartyl proteinase (PbSap) contributes to the virulence of <span class="elsevierStyleItalic">Paracoccidioides brasiliensis</span> infection" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "D.G. Castilho" 1 => "A.F.A. Chaves" 2 => "M.V. Navarro" 3 => "P.M. Conceição" 4 => "K.S. Ferreira" 5 => "L.S. da Silva" 6 => "P. Xander" 7 => "W.L. Batista" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pntd.0006806" "Revista" => array:5 [ "tituloSerie" => "PLoS Negl Trop Dis" "fecha" => "2018" "volumen" => "12" "paginaInicial" => "1" "paginaFinal" => "21" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0210" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Fungal dimorphism regulated gene expression in <span class="elsevierStyleItalic">Ustilago maydis</span>. II. Filament down-regulated genes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "M.D. García-Pedrajas" 1 => "S.E. Gold" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1364-3703.2004.00233.x" "Revista" => array:6 [ "tituloSerie" => "Mol Plant Pathol" "fecha" => "2004" "volumen" => "5" "paginaInicial" => "295" "paginaFinal" => "307" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20565597" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0215" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Dimorphism in fungal pathogens of mammals, plants, and insects" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "G.M. Gauthier" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.ppat.1004608" "Revista" => array:5 [ "tituloSerie" => "PLoS Pathog" "fecha" => "2015" "volumen" => "11" "paginaInicial" => "e1004608" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25675433" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0220" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mutation in a heat-regulated hsp70 gene of <span class="elsevierStyleItalic">Ustilago maydis</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "D.W. Holden" 1 => "J.W. Kronstad" 2 => "S.A. Leong" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/j.1460-2075.1989.tb03596.x" "Revista" => array:6 [ "tituloSerie" => "EMBO J" "fecha" => "1989" "volumen" => "8" "paginaInicial" => "1927" "paginaFinal" => "1934" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/2792075" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0225" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Bax inhibitor-1: a highly conserved endoplasmic reticulum-resident cell death suppressor" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "T. Ishikawa" 1 => "N. Watanabe" 2 => "M. Nagano" 3 => "M. Kawai-Yamada" 4 => "E. Lam" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/cdd.2011.59" "Revista" => array:5 [ "tituloSerie" => "Cell Death Differ" "fecha" => "2011" "volumen" => "18" "paginaInicial" => "1271" "paginaFinal" => "1278" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0230" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Secretome analysis of virulent <span class="elsevierStyleItalic">Pyrenophora teres f. teres</span> isolates" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "I.A. Ismail" 1 => "A.J. Able" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/pmic.201500498" "Revista" => array:6 [ "tituloSerie" => "Proteomics" "fecha" => "2016" "volumen" => "16" "paginaInicial" => "2625" "paginaFinal" => "2636" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27402336" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0235" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Proteome profiling of the dimorphic fungus <span class="elsevierStyleItalic">Penicillium marneffei</span> extracellular proteins and identification of glyceraldehyde-3-phosphate dehydrogenase as an important adhesion factor for conidial attachment" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "S.K.P. Lau" 1 => "H. Tse" 2 => "J.S.Y. Chan" 3 => "A.C. Zhou" 4 => "S.O.T. Curreem" 5 => "C.C.Y. Lau" 6 => "K.-Y. Yuen" 7 => "P.C.Y. Woo" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/febs.12566" "Revista" => array:6 [ "tituloSerie" => "FEBS J" "fecha" => "2013" "volumen" => "280" "paginaInicial" => "6613" "paginaFinal" => "6626" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24128375" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0240" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Autophagy-related protein MoAtg14 is involved in differentiation, development and pathogenicity in the rice blast fungus <span class="elsevierStyleItalic">Magnaporthe oryzae</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:10 [ 0 => "X.-H. Liu" 1 => "Y.-H. Zhao" 2 => "X.-M. Zhu" 3 => "X.-Q. Zeng" 4 => "L.-Y. Huang" 5 => "B. Dong" 6 => "Z.-Z. Su" 7 => "Y. Wang" 8 => "J.-P. Lu" 9 => "F.-C. Lin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/srep40018" "Revista" => array:5 [ "tituloSerie" => "Sci Rep" "fecha" => "2017" "volumen" => "7" "paginaInicial" => "40018" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28067330" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0245" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Analysis of relative gene expression data using real-time quantitative PCR and the 2<span class="elsevierStyleSup">−ΔΔCT</span> method" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "K.J. Livak" 1 => "T.D. Schmittgen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1006/meth.2001.1262" "Revista" => array:6 [ "tituloSerie" => "Methods" "fecha" => "2001" "volumen" => "25" "paginaInicial" => "402" "paginaFinal" => "408" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11846609" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0250" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mcchs1, a member of a chitin synthase gene family in <span class="elsevierStyleItalic">Mucor circinelloides</span>, is differentially expressed during dimorphism" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M.A. López-Matas" 1 => "A.P. Eslava" 2 => "J.M. Díaz-Mínguez" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s002849910034" "Revista" => array:6 [ "tituloSerie" => "Curr Microbiol" "fecha" => "2000" "volumen" => "40" "paginaInicial" => "169" "paginaFinal" => "175" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10679048" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0255" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Aspectos biológicos y epidemiológicos del carbón del maní (<span class="elsevierStyleItalic">Arachis hypogaea</span> L.) causado por <span class="elsevierStyleItalic">Thecaphora frezii</span> Carranza & Lindquist" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A. Marinelli" 1 => "G.J. March" 2 => "C. Oddino" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.31047/1668.298x.v25.n1.2735" "Revista" => array:5 [ "tituloSerie" => "AgriScientia" "fecha" => "2008" "volumen" => "25" "paginaInicial" => "1" "paginaFinal" => "5" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0260" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Amino acid permeases and virulence in <span class="elsevierStyleItalic">Cryptococcus neoformans</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:12 [ 0 => "K.F.C. Martho" 1 => "A.T. de Melo" 2 => "J.P.F. Takahashi" 3 => "J.M. Guerra" 4 => "D.C. da Silva Santos" 5 => "S.U. Purisco" 6 => "M.D.S.C. Melhem" 7 => "R.D.A. Fazioli" 8 => "C. Phanord" 9 => "P. Sartorelli" 10 => "M.A. Vallim" 11 => "R.C. Pascon" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0163919" "Revista" => array:4 [ "tituloSerie" => "PLoS One" "fecha" => "2016" "volumen" => "11" "paginaInicial" => "e0163919" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0265" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Analysis of the regulation of the <span class="elsevierStyleItalic">Ustilago maydis</span> proteome by dimorphism, pH or MAPK and GCN5 genes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "J.L. Martínez-Salgado" 1 => "C.G. León-Ramírez" 2 => "A.B. Pacheco" 3 => "J. Ruiz-Herrera" 4 => "A.P.B. de la Rosa" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jprot.2012.12.022" "Revista" => array:6 [ "tituloSerie" => "J Proteomics" "fecha" => "2013" "volumen" => "79" "paginaInicial" => "251" "paginaFinal" => "262" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23305952" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0270" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Transcriptomic analysis of the dimorphic transition of <span class="elsevierStyleItalic">Ustilago maydis</span> induced in vitro by a change in pH" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "D. Martínez-Soto" 1 => "J. Ruiz-Herrera" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.fgb.2013.08.011" "Revista" => array:5 [ "tituloSerie" => "Fungal Genet Biol" "fecha" => "2013" "volumen" => "58–59" "paginaInicial" => "116" "paginaFinal" => "125" ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0275" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Diversity in enoyl-acyl carrier protein reductases" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "R.P. Massengo-Tiassé" 1 => "J.E. Cronan" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00018-009-8704-7" "Revista" => array:6 [ "tituloSerie" => "Cell Mol Life Sci" "fecha" => "2009" "volumen" => "66" "paginaInicial" => "1507" "paginaFinal" => "1517" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19151923" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0280" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Interaction transcriptome analysis identifies <span class="elsevierStyleItalic">Magnaporthe oryzae</span> BAS1-4 as biotrophy-associated secreted proteins in rice blast disease" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "G. Mosquera" 1 => "M.C. Giraldo" 2 => "C.H. Khang" 3 => "S. Coughlan" 4 => "B. Valent" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1105/tpc.107.055228" "Revista" => array:6 [ "tituloSerie" => "Plant Cell" "fecha" => "2009" "volumen" => "21" "paginaInicial" => "1273" "paginaFinal" => "1290" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19357089" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0285" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "aspS encoding an unusual aspartyl protease from <span class="elsevierStyleItalic">Sclerotinia sclerotiorum</span> is expressed during phytopathogenesis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "N. Poussereau" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S0378-1097(00)00500-0" "Revista" => array:6 [ "tituloSerie" => "FEMS Microbiol Lett" "fecha" => "2001" "volumen" => "194" "paginaInicial" => "27" "paginaFinal" => "32" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11150661" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0290" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "FungiFun2: a comprehensive online resource for systematic analysis of gene lists from fungal species" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "S. Priebe" 1 => "C. Kreisel" 2 => "F. Horn" 3 => "R. Guthke" 4 => "J. Linde" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/bioinformatics/btu627" "Revista" => array:6 [ "tituloSerie" => "Bioinformatics" "fecha" => "2015" "volumen" => "31" "paginaInicial" => "445" "paginaFinal" => "446" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25294921" "web" => "Medline" ] ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0295" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "R: a language and environment for statistical computing" "autores" => array:1 [ 0 => array:2 [ "colaboracion" => "R Core Team" "etal" => false ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2018" "editorial" => "R Foundation for Statistical Computing" "editorialLocalizacion" => "Vienna, Austria" ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0300" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "InfoStat versión 2016" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "J.A. Di Rienzo" 1 => "F. Casanoves" 2 => "M.G. Balzarini" 3 => "L. Gonzalez" 4 => "M. Tablada" 5 => "C.W. Robledo" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2016" "editorial" => "Grupo Infostat, FCA, Universidad Nacional de Córdoba" "editorialLocalizacion" => "Argentina" ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0305" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "edgeR: a bioconductor package for differential expression analysis of digital gene expression data" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M.D. Robinson" 1 => "D.J. McCarthy" 2 => "G.K. Smyth" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/bioinformatics/btp616" "Revista" => array:6 [ "tituloSerie" => "Bioinformatics" "fecha" => "2010" "volumen" => "26" "paginaInicial" => "139" "paginaFinal" => "140" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19910308" "web" => "Medline" ] ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0310" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "An introduction to fungal dimorphism" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J. Ruiz-Herrera" 1 => "E. Campos-Góngora" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.2174/978160805364311201010003" "LibroEditado" => array:5 [ "editores" => "J.Ruiz-Herrera" "titulo" => "Dimorphic fungi: their importance as models for differentiation and fungal pathogenesis" "paginaInicial" => "3" "paginaFinal" => "15" "serieFecha" => "2012" ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0315" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Downregulation of fungal cytochrome c peroxidase expression by antifungal quinonemethide triterpenoids" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "W.-D. Seo" 1 => "D.-Y. Lee" 2 => "K.H. Park" 3 => "J.-H. Kim" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3839/jabc.2016.048" "Revista" => array:5 [ "tituloSerie" => "J Appl Biol Chem" "fecha" => "2016" "volumen" => "59" "paginaInicial" => "281" "paginaFinal" => "284" ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0320" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Isolation and characterization from pathogenic fungi of genes encoding ammonium permeases and their roles in dimorphism" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "D.G. Smith" 1 => "M.D. Garcia-Pedrajas" 2 => "S.E. Gold" 3 => "M.H. Perlin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1046/j.1365-2958.2003.03680.x" "Revista" => array:6 [ "tituloSerie" => "Mol Microbiol" "fecha" => "2003" "volumen" => "50" "paginaInicial" => "259" "paginaFinal" => "275" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/14507379" "web" => "Medline" ] ] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0325" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "<span class="elsevierStyleItalic">Candida tropicalis</span> RON1 is required for hyphal formation, biofilm development, and virulence but is dispensable for N-acetylglucosamine catabolism" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Y.-D. Song" 1 => "C.-C. Hsu" 2 => "S.Q. Lew" 3 => "C.-H. Lin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/mmy/myaa063" "Revista" => array:5 [ "tituloSerie" => "Med Mycol" "fecha" => "2021" "volumen" => "59" "paginaInicial" => "379" "paginaFinal" => "391" ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0330" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Identification of Chitin synthase and Chitinase genes in three ontogenetic stages from <span class="elsevierStyleItalic">Thecaphora frezii</span>, the causal agent of peanut smut disease" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "N.W. Soria" 1 => "M.S. Díaz" 2 => "A.C. Figueroa" 3 => "V.R. Alasino" 4 => "P. Yang" 5 => "D.M. Beltramo" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.pmpp.2021.101727" "Revista" => array:4 [ "tituloSerie" => "Physiol Mol Plant Pathol" "fecha" => "2021" "volumen" => "116" "paginaInicial" => "101727" ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0335" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Identification and expression of some plant cell wall-degrading enzymes present in three ontogenetics stages of <span class="elsevierStyleItalic">Thecaphora frezii</span>, a peanut (<span class="elsevierStyleItalic">Arachis hypogaea</span> L.) pathogenic fungus" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "N.W. Soria" 1 => "A.C. Figueroa" 2 => "M.S. Díaz" 3 => "V.R. Alasino" 4 => "P. Yang" 5 => "D.M. Beltramo" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.4236/ajps.2022.131001" "Revista" => array:5 [ "tituloSerie" => "Am J Plant Sci" "fecha" => "2022" "volumen" => "13" "paginaInicial" => "1" "paginaFinal" => "22" ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0340" "etiqueta" => "32" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Hsp70 in fungi: evolution, function and vaccine candidate" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "S. Tiwari" 1 => "J. Shankar" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/978-3-319-89551-2_20" "LibroEditado" => array:5 [ "editores" => "A.A.A.Asea, P.Kaur" "titulo" => "HSP70 in human diseases and disorders" "paginaInicial" => "381" "paginaFinal" => "400" "serieFecha" => "2018" ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0345" "etiqueta" => "33" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Differential gene expression during teliospore germination in <span class="elsevierStyleItalic">Ustilago maydis</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A.R. Zahiri" 1 => "M.R. Babu" 2 => "B.J. Saville" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00438-005-1142-9" "Revista" => array:5 [ "tituloSerie" => "Mol Genet Genom" "fecha" => "2005" "volumen" => "273" "paginaInicial" => "394" "paginaFinal" => "403" ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0350" "etiqueta" => "34" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "<span class="elsevierStyleItalic">Cryptococcus neoformans</span>: sex, morphogenesis, and virulence" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Y. Zhao" 1 => "X. Lin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.meegid.2021.104731" "Revista" => array:5 [ "tituloSerie" => "Infect Genet Evol" "fecha" => "2021" "volumen" => "89" "paginaInicial" => "104731" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33497839" "web" => "Medline" ] ] ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0355" "etiqueta" => "35" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Molecular interactions between smut fungi and their host plants" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "W. Zuo" 1 => "B. Ökmen" 2 => "J.R.L. Depotter" 3 => "M.K. Ebert" 4 => "A. Redkar" 5 => "J. Misas Villamil" 6 => "G. Doehlemann" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1146/annurev-phyto-082718-100139" "Revista" => array:6 [ "tituloSerie" => "Annu Rev Phytopathol" "fecha" => "2019" "volumen" => "57" "paginaInicial" => "411" "paginaFinal" => "430" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31337276" "web" => "Medline" ] ] ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0360" "etiqueta" => "36" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "National Center for Biotechnology Information. Available from: <a target="_blank" href="https://www.ncbi.nlm.nih.gov/">https://www.ncbi.nlm.nih.gov/</a> [accessed 15.07.22]." ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack753041" "titulo" => "Acknowledgements" "texto" => "<p id="par0235" class="elsevierStylePara elsevierViewall">The present work was supported by grants from <span class="elsevierStyleGrantSponsor" id="gs1">Universidad Católica de Córdoba</span>, <span class="elsevierStyleGrantSponsor" id="gs2">Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR)</span>, <span class="elsevierStyleGrantSponsor" id="gs3">Fundación Maní Argentino</span> and <span class="elsevierStyleGrantSponsor" id="gs4">Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)</span>.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/03257541/0000005600000002/v1_202406240441/S0325754124000038/v1_202406240441/en/main.assets" "Apartado" => array:4 [ "identificador" => "37862" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Microbiología agrícola, ambiental e industrial" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/03257541/0000005600000002/v1_202406240441/S0325754124000038/v1_202406240441/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0325754124000038?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 5 | 0 | 5 |
2024 October | 45 | 11 | 56 |
2024 September | 51 | 16 | 67 |
2024 August | 54 | 14 | 68 |
2024 July | 45 | 8 | 53 |
2024 June | 39 | 5 | 44 |
2024 May | 48 | 5 | 53 |
2024 April | 51 | 5 | 56 |
2024 March | 38 | 8 | 46 |
2024 February | 43 | 31 | 74 |