covid
Buscar en
Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral
Toda la web
Inicio Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral Subgingival Biofilm Communities in Health and Disease
Journal Information
Vol. 2. Issue 3.
Pages 187-192 (December 2009)
Share
Share
Download PDF
More article options
Vol. 2. Issue 3.
Pages 187-192 (December 2009)
Open Access
Subgingival Biofilm Communities in Health and Disease
Visits
1556
P.I. Díaz1,
Corresponding author
pdiaz@uchc.edu

Corresponding author: Patricia I. Diaz. Division of Periodontology, Department of Oral Health and Diagnostic Sciences School of Dental Medicine. The University of Connecticut Health Center. 263 Farmington Ave. MC 1710. Farmington, CT 06030-0001. Ph: (860) 679 3702.
, P.E. Kolenbrander2
1 Division of Periodontology, Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, the University of Connecticut Health Center, Farmington, CT, USA
2 Vashon, WA, USA
This item has received

Under a Creative Commons license
Article information
Abstract

Oral biofilm-related diseases such as periodontal disease are infection processes that arise from the resident (indigenous) flora. Prior to the development of a periodontal lesion, a change in the proportion of certain species with greater pathogenic potential occurs within the biofilm. This change from a “commensal” flora to one considered pathogenic is accompanied by a disruption of the immune homeostasis and development of an inflammatory response. Chronic inflammation of the supporting periodontal structures eventually progresses to tooth loss. Although periodontal diseases have a multifactorial etiology in which environmental and host factors play an important role, polymicrobial biofilm communities with pathogenic properties are the primary etiological factor of periodontal lesions. Therefore, a thorough understanding of the events that lead to the maturation of subgingival biofilm communities is necessary in order to develop better diagnostic and treatment strategies. This review article will summerize our current understanding of the ecology of subgingival biofilms and the role of these multi-species communities as etiological agents of periodontal disease. An overview of the process of subgingival biofilm formation will be presented followed by a description of the ecological determinants of biofilm development in the subgingival environment. Finally, the concept of subgingival polymicrobial biofilm communities as the etiological agents that initiate a host-mediated inflamamtory response will be discussed.

Key words:
Subgingival biofilms
microbial communities
periodontal disease etiology
Full text is only aviable in PDF
References
[1.]
P.E. Kolenbrander, R.J. Palmer Jr., A.H. Rickard, N.S. Jakubovics, N.I. Chalmers, P.I. Diaz..
(2006). Bacterial interactions and successions during plaque development.
Periodontol, 42 (2000), pp. 47-79
[2.]
M. Handfield, H.V. Baker, R.J. Lamont.
Beyond good and evil in the oral cavity: insights into host-microbe relationships derived from transcriptional profiling of gingival cells.
J Dent Res, 87 (2008), pp. 203-223
[3.]
J.A. Aas, B.J. Paster, L.N. Stokes, I. Olsen, F.E. Dewhirst.
Defining the normal bacterial flora of the oral cavity.
J Clin Microbiol, 43 (2005), pp. 5721-5732
[4.]
B.J. Paster, S.K. Boches, J.L. Galvin, R.E. Ericson, C.N. Lau, V.A. Levanos, A. Sahasrabudhe, F.E. Dewhirst.
Bacterial diversity in human subgingival plaque.
J Bacteriol, 183 (2001), pp. 3770-3783
[5.]
W.E.C. Moore, L.V. Moore.
(1994). Periodontal microbiota in different clinical conditions.
Periodontology, 5 (2000), pp. 66-77
[6.]
S.S. Socransky, A.D. Haffajee.
(1994a). Evidence of bacterial etiology: a historical perspective.
Periodontol, 5 (2000), pp. 7-25
[7.]
S.S. Socransky, A.D. Haffajee, M.A. Cugini, C. Smith, R.L. Kent Jr..
Microbial complexes in subgingival plaque.
J Clin Periodontol, 25 (1998), pp. 134-144
[8.]
A. Tanner, M.F. Maiden, P.J. Macuch, L.L. Murray, R.L. Kent Jr..
Microbiota of health, gingivitis, and initial periodontitis.
J Clin Periodontol, 25 (1998), pp. 85-98
[9.]
E.B. Kenny, A.A. Ash Jr..
Oxidation reduction potential of developing plaque, periodontal pockets and gingival sulci.
J Periodontol, 40 (1969), pp. 630-633
[10.]
G.R. Mettraux, F.A. Gusberti, H. Graf..
Oxygen tension (pO2) in untreated human periodontal pockets.
J Periodontol, 55 (1984), pp. 516-521
[11.]
P.D. Marsh, D.J. Bradshaw.
Physiological approaches to the control of oral biofilms.
Adv Dent Res, 11 (1997), pp. 176-185
[12.]
P.F. ter Steeg, J.S. Van der Hoeven, M.H. de Jong, P.J. van Munster, M.J. Jansen.
Enrichment of subgingival microflora on human serum leading to accumulation of Bacteroides species, Peptostreptococci and Fusobacteria.
Antonie Van Leeuwenhoek, 53 (1987), pp. 261-272
[13.]
D. Haubek, O.K. Ennibi, K. Poulsen, M. Vaeth, S. Poulsen, M. Kilian.
Risk of aggressive periodontitis in adolescent carriers of the JP2 clone of Aggregatibacter (Actinobacillus) actinomycetemcomitans in Morocco: a prospective longitudinal cohort study.
[14.]
P.N. Papapanou.
Population studies of microbial ecology in periodontal health and disease.
Ann Periodontol, 7 (2002), pp. 54-61
[15.]
G. Haraldsson, J.H. Meurman, E. Kononen, W.P. Holbrook.
Properties of hemagglutination by Prevotella melaninogenica.
[16.]
S. Ji, Y. Kim, B.M. Min, S.H. Han, Y. Choi..
Innate immune responses of gingival epithelial cells to nonperiodontopathic and periodontopathic bacteria.
J Periodontal Res, 42 (2007), pp. 503-510
[17.]
R.P. Teles, M. Patel, S.S. Socransky, A.D. Haffajee.
Disease progression in periodontally healthy and maintenance subjects.
J Periodontol, 79 (2008), pp. 784-794
[18.]
H.K. Kuramitsu, X. He, R. Lux, M.H. Anderson, W. Shi..
Interspecies interactions within oral microbial communities.
Microbiol Mol Biol Rev, 71 (2007), pp. 653-670
[19.]
P.E. Kolenbrander, R.N. Andersen, D.S. Blehert, P.G. Egland, J.S. Foster, R.J. Palmer Jr..
Communication among oral bacteria.
Microbiol Mol Biol Rev, 66 (2002), pp. 486-505
[20.]
Y. Yao, J. Grogan, M. Zehnder, U. Lendenmann, B. Nam, Z. Wu, C.E. Costello, F.G. Oppenheim.
Compositional analysis of human acquired enamel pellicle by mass spectrometry.
Arch Oral Biol, 46 (2001), pp. 293-303
[21.]
R. Bos, H.C. van der Mei, H.J. Busscher.
Co-adhesion of oral microbial pairs under flow in the presence of saliva and lactose.
J Dent Res, 75 (1996), pp. 809-815
[22.]
H.J. Busscher, R. Bos, H.C. van der Mei.
Initial microbial adhesion is a determinant for the strength of biofilm adhesion.
FEMS Microbiol Lett, 128 (1995), pp. 229-234
[23.]
P.E. Kolenbrander.
Surface recognition among oral bacteria: multigeneric coaggregations and their mediators.
Crit Rev Microbiol, 17 (1989), pp. 137-159
[24.]
F.J. Cassels, C.V. Hughes, J.L. Nauss.
Adhesin receptors of human oral bacteria and modeling of putative adhesinbinding domains.
J Ind Microbiol, 15 (1995), pp. 176-185
[25.]
J.O. Cisar, A.L. Sandberg, C. Abeygunawardana, G.P. Reddy, C.A. Bush..
Lectin recognition of host-like saccharide motifs in streptococcal cell wall polysaccharides.
Glycobiology, 5 (1995), pp. 655-662
[26.]
C.J. Whittaker, C.M. Klier, P.E. Kolenbrander.
Mechanisms of adhesion by oral bacteria.
Annu Rev Microbiol, 50 (1996), pp. 513-552
[27.]
P.I. Diaz, N.I. Chalmers, A.H. Rickard, C. Kong, C.L. Milburn, R.J. Palmer Jr., P.E. Kolenbrander.
Molecular characterization of subject-specific oral microflora during initial colonization of enamel.
Appl Environ Microbiol, 72 (2006), pp. 2837-2848
[28.]
J. Li, E.J. Helmerhorst, C.W. Leone, R.F. Troxler, T. Yaskell, A.D. Haffajee, S.S. Socransky, F.G. Oppenheim.
Identification of early microbial colonizers in human dental biofilm.
J Appl Microbiol, 97 (2004), pp. 1311-1318
[29.]
B. Nyvad, M. Kilian.
Microbiology of the early colonization of human enamel and root surfaces in vivo.
Scand J Dent Res, 95 (1987), pp. 369-380
[30.]
S.S. Socransky, C. Smith, L. Martin, B.J. Paster, F.E. Dewhirst, A.E. Levin.
“Checkerboard” DNA-DNA hybridization.
Biotechniques, 17 (1994), pp. 788-792
[31.]
E. Theilade, J. Theilade.
Formation and ecology of plaque at different locations in the mouth.
Scand J Dent Res, 93 (1985), pp. 90-95
[32.]
M. Quirynen, R. Vogels, M. Pauwels, A.D. Haffajee, S.S. Socransky, N.G. Uzel, D. van, Steenberghe.
Initial subgingival colonization of ‘pristine’ pockets.
J Dent Res, 84 (2005), pp. 340-344
[33.]
M. Quirynen, R. Vogels, W. Peeters, D. van Steenberghe, I. Naert, A. Haffajee.
Dynamics of initial subgingival colonization of ‘pristine’ peri-implant pockets.
Clin Oral Implants Res, 17 (2006), pp. 25-37
[34.]
M.K. Hellstrom, P. Ramberg, L. Krok, J. Lindhe.
The effect of supragingival plaque control on the subgingival microflora in human periodontitis.
J Clin Periodontol, 23 (1996), pp. 934-940
[35.]
N. Tinanoff, A. Gross, J.M. Brady.
Development of plaque on enamel. Parallel investigations.
J Periodontal Res, 11 (1976), pp. 197-209
[36.]
H. Loe, E. Theilade, S.B. Jensen.
Experimental gingivitis in man.
J Periodontol, 36 (1965), pp. 177-187
[37.]
M.A. Listgarten.
Structure of the microbial flora associated with periodontal health and disease in man. A light and electron microscopic study.
J Periodontol, 47 (1976), pp. 1-18
[38.]
S.R. Diehl, Y. Wang, C.N. Brooks, J.A. Burmeister, J.V. Califano, S. Wang, H.A. Schenkein.
Linkage disequilibrium of interleukin-1 genetic polymorphisms with early-onset periodontitis.
J Periodontol, 70 (1999), pp. 418-430
[39.]
K.S. Kornman, A. Crane, H.Y. Wang, F.S. di Giovine, M.G. Newman, F.W. Pirk, T.G. Wilson Jr., F.L. Higginbottom, G.W. Duff..
The interleukin-1 genotype as a severity factor in adult periodontal disease.
J Clin Periodontol, 24 (1997), pp. 72-77
[40.]
K.S. Kornman, F.S. di Giovine.
Genetic variations in cytokine expression: a risk factor for severity of adult periodontitis.
Ann Periodontol, 3 (1998), pp. 327-338
[41.]
S.S. Socransky, A.D. Haffajee.
(2005). Periodontal microbial ecology.
Periodontol, 38 (2000), pp. 135-187
[42.]
A.H. Rickard, R.J. Palmer Jr., D.S. Blehert, S.R. Campagna, M.F. Semmelhack, P.G. Egland, B.L. Bassler, P.E. Kolenbrander.
Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth.
Mol Microbiol, 60 (2006), pp. 1446-1456
[43.]
P.G. Egland, R.J. Palmer Jr., P.E. Kolenbrander.
Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition.
Proc Natl Acad Sci U S A, 101 (2004), pp. 16917-16922
[44.]
D. Grenier.
Nutritional interactions between two suspected periodontopathogens, Treponema denticola and Porphyromonas gingivalis.
Infect Immun, 60 (1992), pp. 5298-5301
[45.]
N. Takahashi.
Acid-neutralizing activity during amino acid fermentation by Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum.
Oral Microbiol Immunol, 18 (2003), pp. 109-113
[46.]
P.I. Diaz, P.S. Zilm, A.H. Rogers.
Fusobacterium nucleatum supports the growth of Porphyromonas gingivalis in oxygenated and carbon-dioxide-depleted environments.
Microbiol, 148 (2002), pp. 467-472
[47.]
D.L. Lavanchy, M. Bickel, P.C. Baehni.
The effect of plaque control after scaling and root planing on the subgingival microflora in human periodontitis.
J Clin Periodontol, 14 (1987), pp. 295-299
[48.]
Y. Noiri, S. Ebisu.
Identification of periodontal diseaseassociated bacteria in the “plaque-free zone”.
J Periodontol, 71 (2000), pp. 1319-1326
[49.]
Y. Noiri, L. Li, S. Ebisu.
The localization of periodontal-diseaseassociated bacteria in human periodontal pockets.
J Dent Res, 80 (2001), pp. 1930-1934
[50.]
P.D. Marsh.
Are dental diseases examples of ecological catastrophes?.
Microbiology, 149 (2003), pp. 279-294
[51.]
G.G. Anderson, S. Moreau-Marquis, B.A. Stanton, G.A. O’Toole.
In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells.
Infect Immun, 76 (2008), pp. 1423-1433
[52.]
K. Driffield, K. Miller, J.M. Bostock, A.J. O’Neill, I. Chopra.
Increased mutability of Pseudomonas aeruginosa in biofilms.
J Antimicrob Chemother, 61 (2008), pp. 1053-1056
[53.]
R.D. Waite, A. Papakonstantinopoulou, E. Littler, M.A. Curtis.
Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms.
J Bacteriol, 187 (2005), pp. 6571-6576
[54.]
D.A. Hogan, R. Kolter.
Pseudomonas-Candida interactions: an ecological role for virulence factors.
Science, 296 (2002), pp. 2229-2232
[55.]
D.A. Hogan, A. Vik, R. Kolter.
A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology.
Mol Microbiol, 54 (2004), pp. 1212-1223
[56.]
N.S. Jakubovics, S.R. Gill, S.E. Iobst, M.M. Vickerman, P.E. Kolenbrander.
Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii.
J Bacteriol, 190 (2008), pp. 3646-3657
[57.]
S.B. Luppens, D. Kara, L. Bandounas, M.J. Jonker, F.R. Wittink, O. Bruning, T.M. Breit, J.M. Ten Cate, W. Crielaard.
Effect of Veillonella parvula on the antimicrobial resistance and gene expression of Streptococcus mutans grown in a dual-species biofilm.
Oral Microbiol Immunol, 23 (2008), pp. 183-189
[58.]
C. Cosseau, D.A. Devine, E. Dullaghan, J.L. Gardy, A. Chikatamarla, S. Gellatly, L.L. Yu, J. Pistolic, R. Falsafi, J. Tagg, R.E. Hancock.
The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes hostmicrobe homeostasis.
Infect Immun, 76 (2008), pp. 4163-4175
[59.]
Y. Ding, V.J. Uitto, J. Firth, T. Salo, M. Haapasalo, Y.T. Konttinen, T. Sorsa.
Modulation of host matrix metalloproteinases by bacterial virulence factors relevant in human periodontal diseases.
Oral Dis, 1 (1995), pp. 279-286
[60.]
R.J. Lamont, D. Oda, R.E. Persson, G.R. Persson.
Interaction of Porphyromonas gingivalis with gingival epithelial cells maintained in culture.
Oral Microbiol Immunol, 7 (1992), pp. 364-367
[61.]
D.H. Meyer, J.E. Lippmann, P.M. Fives-Taylor.
Invasion of epithelial cells by Actinobacillus actinomycetemcomitans: a dynamic, multistep process.
Infect Immun, 64 (1996), pp. 2988-2997
[62.]
J.L. Ebersole, F. Feuille, L. Kesavalu, S.C. Holt..
Host modulation of tissue destruction caused by periodontopathogens - effects on a mixed microbial infection composed of Porphyromonas gingivalis and Fusobacterium nucleatum.
Microb Pathog, 23 (1997), pp. 23-32
[63.]
L. Kesavalu, S. Sathishkumar, V. Bakthavatchalu, C. Matthews, D. Dawson, M. Steffen, J.L. Ebersole.
Rat model of polymicrobial infection, immunity, and alveolar bone resorption in periodontal disease.
Infect Immun, 75 (2007), pp. 1704-1712
[64.]
L. Li, A. Dongari-Bagtzoglou.
Oral epithelium-Candida glabrata interactions in vitro.
Oral Microbiol Immunol, 22 (2007), pp. 182-187
[65.]
A. Vankeerberghen, H. Nuytten, K. Dierickx, M. Quirynen, J.J. Cassiman, H. Cuppens.
Differential induction of human beta-defensin expression by periodontal commensals and pathogens in periodontal pocket epithelial cells.
J Periodontol, 76 (2005), pp. 1293-1303
[66.]
W.O. Chung, B.A. Dale..
Differential utilization of nuclear factor-kappaB signaling pathways for gingival epithelial cell responses to oral commensal and pathogenic bacteria.
Oral Microbiol Immunol, 23 (2008), pp. 119-126
[67.]
M. Muthukuru, C.W. Cutler.
Antigen capture of Porphyromonas gingivalis by human macrophages is enhanced but killing and antigen presentation are reduced by endotoxin tolerance.
Infect Immun, 76 (2008), pp. 477-485
[68.]
A.M. Edwards, T.J. Grossman, J.D. Rudney.
Fusobacterium nucleatum transports noninvasive Streptococcus cristatus into human epithelial cells.
Infect Immun, 74 (2006), pp. 654-662
[69.]
H.K. Kuramitsu, W. Chen, A. Ikegami.
Biofilm formation by the periodontopathic bacteria Treponema denticola and Porphyromonas gingivalis.
J Periodontol, 76 (2005), pp. 2047-2051
[70.]
F. Feuille, J.L. Ebersole, L. Kesavalu, M.J. Stepfen, S.C. Holt.
Mixed infection with Porphyromonas gingivalis and Fusobacterium nucleatum in a murine lesion model: potential synergistic effects on virulence.
Infect Immun, 64 (1996), pp. 2094-2100
[71.]
M.P. Venkatesh, D. Pham, M. Fein, L. Kong, L.E. Weisman.
Neonatal coinfection model of coagulase-negative Staphylococcus (Staphylococcus epidermidis) and Candida albicans: fluconazole prophylaxis enhances survival and growth.
Antimicrob Agents Chemother, 51 (2007), pp. 1240-1245
[72.]
M.M. Brinig, P.W. Lepp, C.C. Ouverney, G.C. Armitage, D.A. Relman.
Prevalence of bacteria of division TM7 in human subgingival plaque and their association with disease.
Appl Environ Microbiol, 69 (2003), pp. 1687-1694
[73.]
P.S. Kumar, E.J. Leys, J.M. Bryk, F.J. Martinez, M.L. Moeschberger, A.L. Griffen.
Changes in periodontal health status are associated with bacterial community shifts as assessed by quantitative 16S cloning and sequencing.
J Clin Microbiol, 44 (2006), pp. 3665-3673
[74.]
M. Kilian, E.V. Frandsen, D. Haubek, K. Poulsen.
(2006). The etiology of periodontal disease revisited by population genetic analysis.
Periodontol, 42 (2000), pp. 158-179
[75.]
D. Haubek, K. Poulsen, M. Kilian.
Microevolution and Patterns of Dissemination of the JP2 Clone of Aggregatibacter (Actinobacillus) actinomycetemcomitans.
Infect Immun, (2007),
[76.]
R.J. Palmer Jr., S.M. Gordon, J.O. Cisar, P.E. Kolenbrander.
Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque.
J Bacteriol, 185 (2003), pp. 3400-3409
Copyright © 2009. Sociedad de Periodoncia de Chile, Sociedad de Implantología Oral de Chile y Sociedad de Prótesis y Rehabilitación Oral de Chile
Article options