covid
Buscar en
Revista Colombiana de Cardiología
Toda la web
Inicio Revista Colombiana de Cardiología Propagación de onda en un tejido cardiaco 3D usando dos modelos auriculares
Journal Information
Vol. 20. Issue 4.
Pages 201-207 (July - August 2013)
Share
Share
Download PDF
More article options
Vol. 20. Issue 4.
Pages 201-207 (July - August 2013)
Open Access
Propagación de onda en un tejido cardiaco 3D usando dos modelos auriculares
Wave propagation in a 3D cardiac tissue using two atrial models
Visits
2416
Andrés P. Castaño1,
Corresponding author
andres.castano@ucaldas.edu.co

Correspondencia: Universidad de Caldas. Facultad de Ingeniería. Calle 65 No. 26-10. Ci2dt2. Manizales, Colombia.
, Carlos A. Ruiz1,2, Andrés Castillo3, Elvio Heidenreich4
1 Centro de investigación, innovación, desarrollo y transferencia de tecnología. Facultad de Ingeniería. Universidad de Caldas. Manizales, Colombia
2 Departamento de informática y computación. Universidad Nacional de Colombia. Manizales, Colombia
3 Departamento de Lenguajes y Sistemas Informáticos. Universidad Pontificia de Salamanca. Madrid, España
4 Facultad de Ingeniería. Universidad de Lomas de Zamora. Buenos Aires, Argentina
This item has received

Under a Creative Commons license
Article information
Objetivo

evaluar el grado de predictibilidad entre dos modelos de electrofisiología celular para aurícula humana, analizando las propiedades, a nivel tisular, de la duración del potencial de acción (APD) y velocidad de conducción (CV) en un tejido en tres dimensiones incorporando el direccionamiento de fibras para toda la anatomía auricular.

Métodos

se implementaron los modelos celulares de Courtemanche-Ramírez-Nattel y Nygren; además se desarrolló un modelo geométrico detallado y realista de una aurícula humana, partiendo del modelo burdo de Harrild-Henriquez al que se le incorporó el direccionamiento de fibras en toda la anatomía auricular.

Resultados

las constantes de difusión implementadas permitieron obtener en ambos modelos velocidades de conducción muy similares a las velocidades de conducción reales; además, en las regiones de alta conductividad el direccionamiento de fibras longitudinal permitió obtener velocidades de conducción más altas que en otras zonas de la aurícula.

Conclusiones

la curva del potencial de acción muestra un APD90 (AP al 90% de la repolarización) de 320ms en NYG y 235ms en CRN. En condiciones donde las propiedades de la membrana no han cambiado en la aurícula normal, se ha observado que en ambos modelos se generan subidas de potencial de acción rápidas que se aprecian en la forma del potencial, asociados con una baja velocidad de propagación en la dirección transversal y una subida lenta del potencial de acción, que se relaciona también con una alta velocidad de propagación en el sentido longitudinal.

Palabras clave:
potencial de acción
anisotropía
velocidad de conducción
Objective

to evaluate the degree of predictability between two models of human atrial cellular electrophysiology, analyzing at tissue level the properties of the action potential duration (APD) and conduction velocity (CV) in a three-dimensional tissue incorporating direction of fibers for the entire atrial anatomy.

Methods

we implemented the cellular models of Courtemanche-Ramirez-Nattel and Nygren, also developed a detailed and realistic geometric model of a human atrium, starting from the clumsy model of Harrild-Henriquez to which we incorporated the direction of fibers throughout the entire atrial anatomy.

Results

The diffusion constants implemented allowed to obtain in both models conduction velocities very similar to the real conduction velocities; moreover, in the high conductivity regions the longitudinal fiber direction allowed to obtain conduction velocities higher than in other areas of the atrium.

Conclusions

the action potential curve shows a APD90 (AP at 90% of repolarization) of 320ms in NYG and 235ms in CRN. Under conditions where the membrane properties have not changed in the normal atrium, we observed that in both models increases of fast action potential are generated, which can be seen as the potential associated with a low propagation velocity in the transversal direction and a slow rise of the action potential, which is also related to a high propagation velocity in the longitudinal direction.

Key words:
action potential
anisotropy
conduction velocity
Full text is only aviable in PDF
Bibliografía
[1.]
A. Nygren, C. Fiset, L. Firek, J.W. Clark, D.S. Lindblad, R.B. Clark, et al.
Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization.
Circ Res, 82 (1998), pp. 63-81
[2.]
M. Courtemanche, R.J. Ramirez, S. Nattel.
Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model.
Am J Physiol, 275 (1998), pp. H301-H321
[3.]
R.H. Clayton, O. Bernus, E.M. Cherry, H. Dierckx, F.H. Fenton, L. Mirabella, et al.
Models of cardiac tissue electrophysiology: progress, challenges and open questions.
Prog Biophys Mol Biol, 104 (2011), pp. 22-48
[4.]
A. Nygren, L. Leon, W. Giles.
Simulations of the human atrial action potential.
Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 359 (2001), pp. 1111-1125
[5.]
T. Krogh-Madsen, G.W. Abbott, D.J. Christini.
Effects of electrical and structural remodeling on atrial fibrillation maintenance: a simulation study.
PLoS Comput Biol, 8 (2012), pp. e1002390
[6.]
E.M. Cherry, H.M. Hastings, S.J. Evans.
Dynamics of human atrial cell models: restitution, memory, and intracellular calcium dynamics in single cells.
Prog Biophys Mol Biol, 98 (2008), pp. 24-37
[7.]
E.M. Cherry, S.J. Evans.
Properties of two human atrial cell models in tissue: restitution, memory, propagation, and reentry.
J Theor Biol, 254 (2008), pp. 674-690
[8.]
D. Dongdong Deng Dongdong, X. Ling Xia Ling.
Study the effect of tissue heterogeneity and anisotropy in atrial fibrillation based on a human atrial model.
Computers In Cardiology Proceedings, (2010), pp. 433-436
[9.]
M. Courtemanche, R.J. Ramirez, S. Nattel.
Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: insights from a mathematical model.
Cardiovasc Res, 42 (1999), pp. 477-489
[10.]
D. Harrild, C. Henriquez.
A computer model of normal conduction in the human atria.
Circ Res, 87 (2000), pp. E25-E36
[11.]
Ruiz-Villa CA. Estudio de la vulnerabilidad a reentradas a través de modelos matemáticos y simulación de la aurícula humana [Doctoral Thesis]. Valencia: Universitat Politécnica de Valencia; 2011.
[12.]
A. Hassankhani, B. Yao, G.K. Feld.
Conduction velocity around the tricuspid valve annulus during type 1 atrial flutter: defining the location of areas of slow conduction by three-dimensional electroanatomical mapping.
J Interv Card Electrophysiol, 8 (2003), pp. 121-127
[13.]
K. Shinagawa, H. Mitamura, A. Takeshita, T. Sato, H. Kanki, S. Takatsuki, et al.
Determination of refractory periods and conduction velocity during atrial fibrillation using atrial capture in dogs: direct assessment of the wavelength and its modulation by a sodium channel blocker, pilsicainide.
J Am Coll Cardiol, 35 (2000), pp. 246-253
[14.]
Y. Gong, F. Xie, K.M. Stein, A. Garfinkel, C.A. Culianu, B.B. Lerman, et al.
Mechanism underlying initiation of paroxysmal atrial flutter/atrial fibrillation by ectopic foci: a simulation study.
Circulation, 115 (2007), pp. 2094-2102
[15.]
J.P. Boineau.
Atrial flutter: a synthesis of concepts.
Circulation, 72 (1985), pp. 249-257
[16.]
A. Hansson, M. Holm, P. Blomstrom, R. Johansson, C. Luhrs, J. Brandt, et al.
Right atrial free wall conduction velocity and degree of anisotropy in patients with stable sinus rhythm studied during open heart surgery.
Eur Heart J, 19 (1998), pp. 293-300
[17.]
P. Kojodjojo, P. Kanagaratnam, O.R. Segal, W. Hussain, N.S. Peters.
The effects of carbenoxolone on human myocardial conduction: a tool to investigate the role of gap junctional uncoupling in human arrhythmogenesis.
J Am Coll Cardiol, 48 (2006), pp. 1242-1249
[18.]
H. Hayashi, R.L. Lux, R.F. Wyatt, M.J. Burgess, J.A. Abildskov.
Relation of canine atrial activation sequence to anatomic landmarks.
Am J Physiol, 242 (1982), pp. H421-H428
[19.]
J.A. Cabrera, D. Sanchez-Quintana, S.Y. Ho, A. Medina, R.H. Anderson.
The architecture of the atrial musculature between the orifice of the inferior caval vein and the tricuspid valve: the anatomy of the isthmus.
J Cardiovasc Electrophysiol, 9 (1998), pp. 1186-1195
[20.]
R. Lemery, D. Birnie, A.S.L. Tang, M. Green, M. Gollob, M. Hendry, et al.
Normal Atrial Activation and Voltage During Sinus Rhythm in the Human Heart: An Endocardial and Epicardial Mapping Study in Patients with a History of Atrial Fibrillation.
J Cardiovasc Electrophysiol, 18 (2007), pp. 402-408
[21.]
V. Jacquemet, N. Virag, Z. Ihara, L. Dang, O. Blanc, S. Zozor, et al.
Study of unipolar electrogram morphology in a computer model of atrial fibrillation.
J Cardiovasc Electrophysiol, 14 (2003), pp. S172-S179
[22.]
J.L. Cox, T.E. Canavan, R.B. Schuessler, M.E. Cain, B.D. Lindsay, C. Stone, et al.
The surgical treatment of atrial fibrillation II. Intraoperative electrophysiologic mapping and description of the electrophysiologic basis of atrial flutter and atrial fibrillation.
J Thorac Cardiovasc Surg, 101 (1991), pp. 406-426
[23.]
M.S. Spach, W.T. Miller, E. Miller-Jones, R.B. Warren, R.C. Barr.
Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle.
Circ Res, 45 (1979), pp. 188-204
[24.]
C.D. Jeck, P.A. Boyden.
Age-related appearance of outward currents may contribute to developmental differences in ventricular repolarization.
Circ Res, 71 (1992), pp. 1390-1403
[25.]
L. Xiao, L. Zhang, W. Han, Z. Wang, S. Nattel.
Sex-based transmural differences in cardiac repolarization and ionic-current properties in canine left ventricles.
Am J Physiol Heart Circ Physiol, 291 (2006), pp. H570-H580
Copyright © 2013. Sociedad Colombiana de Cardiología y Cirugía Cardiovascular
Download PDF
Article options