metricas
covid
Buscar en
Revista Española de Cirugía Ortopédica y Traumatología
Toda la web
Inicio Revista Española de Cirugía Ortopédica y Traumatología Cambios morfológicos del fémur con el sexo y la edad. Estudio con TAC
Journal Information
Vol. 47. Issue 5.
Pages 354-361 (January 2003)
Share
Share
Download PDF
More article options
Vol. 47. Issue 5.
Pages 354-361 (January 2003)
Full text access
Cambios morfológicos del fémur con el sexo y la edad. Estudio con TAC
Morphological changes in the femur in relation to sex and age. CT scan study
Visits
4383
J. Pueyoa, P. Ripaldab, F. Forriolb,*
a Servicio de Radiodiagnóstico, Clínica Universitaria
b Laboratorio de Ortopedia Experimental, Facultad de Medicina, Universidad de Navarra
This item has received
Article information
Objetivo

Estudiar los cambios de la forma del fémur, con la edad, en varones y mujeres.

Material y método

Análisis del fémur derecho, con tomografía axial computarizada (TAC), en personas sin patología musculoesquelética conocida, en las secciones correspondientes, de proximal a distal, al 10%, 20%, 25%, 30%, 40%, 50% y 75% de la longitud femoral. Analizando en cada una de las secciones los diámetros mayores y menores, externos e internos o del canal medular; las superficies corticales y medulares y las relaciones entre los diámetros, en los diferentes grupos de edad, en ambos sexos.

Resultados

No se encontraron diferencias de la forma ni del tamaño del fémur con la edad entre sujetos del mismo sexo. Los hombres presentaron valores superiores a las mujeres en todos los parámetros estudiados. La superficie del canal medular fue semejante en ambos sexos y en todos los grupos de edad en cada una de las secciones estudiadas.

Palabras clave:
fémur
envejecimiento
osteoporosis
TAC
Objective

To study the changes that the femur experiences in relation to age in men and women.

Materials and methods

CT scans of the right femur, in persons without no known musculoskeletal disease, in the sections corresponding, proximally to distally, to 10%, 20%, 25%, 30%, 40%, 50% and 75% of femur length were analyzed. In each section, the greater and lesser diameters, external and internal diameters, medullary canal, cortical and medullary surfaces, and relations between diameters in different age groups were studied in both sexes.

Results

No differences were found in the shape or size of the femur with age in subjects of the same sex. Men had higher values than women for all study parameters. The surface of the medullary canal was similar in both sexes and in all the age groups for each section studied.

Key words:
femur
aging
osteoporosis
CT scan
Full text is only aviable in PDF
Bibliografía
[1.]
F. Forriol, L. Gómez, M. Gianonatti, R. Fernández.
A study of the nutrient foramina in human long bones.
Surg Radiol Anat, 9 (1987), pp. 251-255
[2.]
F. Pauwels.
Biomechanics of the locomotor apparatus.
Springer Verlag, (1980),
[3.]
H.M. Frost.
Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff's law: The bone modeling problem.
Anat Rec, 26 (1990), pp. 403-413
[4.]
R.B. Martin.
A theory of fatigue damage accumulation and repair in cortical bone.
J Orthop Res, 10 (1992), pp. 818-825
[5.]
D.R. Carter.
Mechanical loading history and skeletal biology.
J Biomechanics, 20 (1987), pp. 1095-1109
[6.]
M. Haberland, A.F. Schilling, J.M. Rueger, M. Amling.
Brain and bone: central regulation of bone mass.
J Bone Joint Surg Am, 83A (2001), pp. 1871-1876
[7.]
J. Gasperino.
Androgenic regulation of bone mass in women.
Clin Orthop, 311 (1995), pp. 278-286
[8.]
D. Vanderschueren, R. Bouillon.
Androgens and Bone.
Calcif Tissue Int, 56 (1995), pp. 341-346
[9.]
R.B. Martin, P.J. Atkinson.
Age and sex-related changes in the structure and strength of the human femoral shaft.
J Biomechanics, 10 (1977), pp. 223-231
[10.]
C.B. Ruff, W.C. Hayes.
Sex differences in age-related remodeling of the femur and tibia.
J Orthop Res, 6 (1988), pp. 886-896
[11.]
R. Poss.
Natural factors that affect the shape and strength of the aging human bone.
Clin Orthop, 274 (1992), pp. 194-201
[12.]
Y. Hasegawa, P. Schneider, C. Reiners.
Age, sex, and grip strength determine architectural bone parameters assessed by peripheral quantitative computed tomography (pQCT) at the human radius.
J Biomechanics, 34 (2001), pp. 497-503
[13.]
H.M. Frost.
Indirect way to estimate peak joint loads in life and in skeletal remains (Insights from a new paradigm).
Anat Rec, 248 (1997), pp. 475-483
[14.]
D.B. Burr.
Muscle strength, bone mass, and age-related bone loss.
J Bone Min Res, 12 (1997), pp. 1547-1551
[15.]
M.S. Stein, C.D.L. Thomas, S.A. Feik, J.D. Wark, J.G. Clement.
Bone size and mechanics at the femoral diaphysis across age and sex.
J Biomechanics, 31 (1998), pp. 1101-1110
[16.]
G.C. Conroy, M.W. Vannier.
Noninvasive three dimensional computer imaging of matrix filled fossil skulls by high resolution computed tomography.
Science, 226 (1984), pp. 456-458
[17.]
H.K. Genant, J.S. Wilson, E.G. Bovill, F.O. Brunelle, W.R. Murray, J.J. Rodrigo.
Computed tomography of the musculoskeletal system.
J Bone Joint Surg Am, 62A (1980), pp. 1088-1101
[18.]
E.S. Hsu, A.G. Patwardhan, K.P. Meade, T.R. Light, W.R. Martin.
Cross-sectional geometrical properties and bone mineral contents of the human radius and ulna.
J Biomechanics, 26 (1993), pp. 1307-1318
[19.]
A. Aamoldt, K.A. Kvistad, E. Andersen, J. Lund-Larsen, J. Eine, P. Benum, et al.
Determination of the Hounsfield value for CT-based design of custom femoral stems.
J Bone Joint Surg Br, 81B (1999), pp. 143-147
[20.]
S.T. Woolson, P. Dev, L.I. Fellingham, A. Vassiliadis.
3-D imaging of bone from computerized tomography.
Clin Orthop, 202 (1986), pp. 239-248
[21.]
D.R. Sumner, C.L. Olson, P.M. Freeman, J.J. Lobick, T.P. Andriacchi.
Computed tomographic measurement of cortical bone geometry.
J Biomechanics, 22 (1989), pp. 649-653
[22.]
P.J. Rubin, P.F. Leyvraz, J.M. Aubaniac, J.N. Argenson, P. Esteve, B. deRoguin.
The morphology of the proximal femur.
J Bone Joint Surg Br, 74B (1992), pp. 28-32
[23.]
J. Runestead, C.B. Ruff, J.C. Nieh, R.W. Torrington.
MF Teaford. Radiographic estimation of long bone cross-sectional geometric properties.
Am J Phys Anthropol, 90 (1993), pp. 207-213
[24.]
E. Seeman.
During aging, men lose less bone than woman because they gain more periosteal bone, not because they resorb less endosteal bone.
Calcif Tissue Int, 69 (2001), pp. 205-208
[25.]
T.J. Beck, C.B. Ruff, W.W. Scott, C.C. Plato, J.D. Tobin, C.A. Quan.
Sex differences in geometry of the femoral neck with aging: a structural analysis of bone mineral data.
Calcif Tissue Int, 50 (1992), pp. 24-29
[26.]
W.L. Jungers, R.J. Minns.
CT and biomechanical analysis of fossil long bones.
Am J Phys Anthropol, 50 (1979), pp. 285-290
[27.]
C.B. Ruff, W.C. Hayes.
Subperiosteal expansion and cortical remodelling of the human femur and tibia with aging.
Science, 217 (1982), pp. 945-948
[28.]
R. Grütter, J. Cordey, D. Wahl, B. Koller, P. Regazzoni.
A biomechanical enigma: Why are tibial fractures not more frequent in the elderly.
Injury, 31 (2000),
[29.]
C.J. Sychertz, L.D.T. Topoleski, M. Sacco, Ch.A. Engh.
Effect of femoral stiffness on bone remodeling after uncemented arthroplasty.
Clin Orthop, 389 (2001), pp. 218-227
Copyright © 2003. Sociedad Española de Cirugia Ortopédica y Traumatología (SECOT)
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos