metricas
covid
Buscar en
Revista Española de Cirugía Ortopédica y Traumatología
Toda la web
Inicio Revista Española de Cirugía Ortopédica y Traumatología Osteogénesis terapéutica en cirugía del raquis. Bases científicas de la artr...
Journal Information
Vol. 49. Issue S1.
Pages 29-45 (October 2005)
Share
Share
Download PDF
More article options
Vol. 49. Issue S1.
Pages 29-45 (October 2005)
Full text access
Osteogénesis terapéutica en cirugía del raquis. Bases científicas de la artrodesis vertebral. I: fundamentos biomecánicos
Therapeutic osteogenesis in spinal surgery. Scientific basis of vertebral fusion. I: Biomechanical principles
Visits
2367
E.. Guerado Parraa,
Corresponding author
eguerado@hcs.es

Correspondencia: E. Guerado Parra. Servicio de Cirugía Ortopédica y Traumatología. Hospital Costa del Sol. Universidad de Málaga. 29600 Marbella (Málaga). eguerado@hcs.es
a Servicio de Cirugía Ortopédica y Traumatología. Hospital Costa del Sol. Departamento de Cirugía. Universidad de Málaga. Marbella. Málaga
This item has received
Article information
Introducción

En este artículo se trata del éxito o fracaso de la artrodesis, más que del éxito o fracaso de la intervención quirúrgica. El logro del éxito en una artrodesis (fusion de los niveles artrodesados) no implica el éxito de la intervención. El paciente puede tener fusionados perfectamente los segmentos deseados, pero no resuelto su problema.

Biomecánica del raquis con respecto a la osteosíntesis

En relación con los principios de las osteosíntesis, los cuerpos vertebrales y disco soportan la compresión; junto con los ligamentos vertebral común anterior y posterior tienen un efecto de tirante sobre los arcos neurales, las articulaciones facetarias tienen un efecto de neutralización, y los ligamentos amarillo e interespinoso de tirante con absorción de la tracción posterior.

Sistema de instrumentación del raquis

Las técnicas de instrumentación están actualmente muy difundidas en cualquier Servicio de Cirugía Ortopédica o Neurocirugía, con un consiguiente aumento de costes en el tratamiento y una gran variedad de tipos de instrumentación, si bien las más frecuentes son los sistemas transpediculares en la artrodesis posterolateral y los sistemas intersomáticos mediante placas o barras con injertos en el lugar de artrodesis y, en menor medida, las cajas intersomáticas, que se pueden introducir por vía anterior o posterior.

Conclusiones

Las bases biomecánicas contenidas en este trabajo están sometidas a discusión «El resultado del metaanálisis soporta la impresión clínica de que en el tratamiento de la espondilolistesis lumbar degenerativa la fusión espinal aumenta la satisfacción del paciente y que la instrumentación facilita dicha fusión». Se ha venido asumiendo que la inmovilización que producen los sistemas de atornillamiento pedicular debe ser lo más rígida posible; actualmente se cree que es deseable un cierto grado de movilidad para fomentar la osteogénesis.

Palabras clave:
raquis
cirugía
osteogénesis
biomecánica
Introduction

This article examines the success or failure of fusion rather than the success or failure of the surgical intervention. Successful fusion (of all the levels joined) is not synonymous with a successful intervention. While the target segments be perfectly fused, the patient's problem may not be resolved.

Spinal biomechanics in the area of osteosynthesis

According to the principles of osteosynthesis, the vertebral bodies and disk bear the compression forces; together with the anterior and posterior common vertebral ligaments; these elements pull on the neural arches, while the facet joints have a neutralizing effect, and the yellow and interspinal ligaments counteract and absorb posterior traction.

Spinal instrumentation system

Instrumentation techniques are widely used in Orthopedic Surgery and Neurosurgery. Not only do they increase the cost of treatment, there is an extremely wide selection of instrumentation systems. However, the most common are transpedicular systems for posterolateral fusion and intersomatic systems consisting of plates or bar grafts applied in the fusion site and, to a lesser extent, intersomatic cages introduced using an anterior or posterior approach.

Conclusions

These biomechanical principles are discussed. The results of meta-analysis support the clinical impression that spinal fusion for degenerative lumbar spondylolisthesis increases patient satisfaction and is facilitated by the use of instrumentation. Although it has been assumed that pedicular screws should be used to achieve maximum immobilization, it is now believed that a certain degree of mobility favors osteogenesis.

Keywords:
spine
surgery
osteogenesis
biomechanics
Full text is only aviable in PDF
Bibliografía
[1]
Deyo R.A., Cherkin D., Conrad D., Volinn E..
Cost, controversy, crisis: low back pain and the health of the public..
Annu Rev Public Health. , 12 (1991), pp. 141-156
[2]
Burdorf A., Sorock G..
Positive and negative evidence of risk factors for back disorders..
Scand J Work Environ Health. , 23 (1997), pp. 243-256
[3]
Statistic Canada. NPHS Public Use Microdata Documentation. Statistics Canada, 1995..
[4]
Kopec J.A., Sayre E.C., Esdaile J.M..
Predictors of Back Pain in a General Population Cohort..
[5]
Sirera Verecher M.J., López Prats F..
Estado clínico y funcional de los adultos con escoliosis idiopática no intervenida quirúrgicamente..
Rev Ortop Traumatol. , 46 (2002), pp. 520-527
[6]
Hernández Martínez A., Pellisé Urquiza F., Becerra Fontal J.A., Rovira A., Bagó Granell J., Villanueva Leal C..
Signos predictivos de dolor discógeno lumbar: correlación de la RM con la discografía..
Rev Ortop Traumatol. , 46 (2002), pp. 528-533
[7]
Nachemson A.L..
Failed Back Surgery Syndrome Is the Syndrome of the Failed Back Surgeon!..
Failed Back Surgery Syndrome Is the Syndrome of the Failed Back Surgeon!., pp. 213-222
[8]
Heggeness M.H., Doherty B.J..
The trabecular anatomy of thoracolumbar vertebrae: Implications for burst fracture..
J Anat. , 191 (1997), pp. 309-312
[9]
Yaszemski M.J., White A.A., Panjabi M.M..
Biomechanics of the Spine..
Biomechanics of the Spine., pp. 15-23
[10]
Tender G.C., Kutz S., Baratta R., Voorhies R.M..
Unilateral progressive alterations in the lumbar spine: a biomechanical study..
J Neurosurg Spine. , 2 (2005), pp. 298-302
[11]
Panjabi M.M., Oxland T.R., Lin R.M., Mc Gowen T.W..
Thoracolumbar burst fracture: A biomechanical investigation of its multidirectional flexibility..
Spine. , 19 (1994), pp. 578-585
[12]
Frederickson B.E., Edwards W.T., Rauschining W., Bayley J.C., Yuan H.A..
Vertebral burst fractures: An experimental morphologic, and radiographic study..
Spine. , 17 (1992), pp. 1012-1021
[13]
Albert T.J., Levine M.J., An H.S., Cotler J.M., Baldestrom R.A..
Concomitant noncontigous thoracolumbar and sacral fractures..
Spine. , 18 (1993), pp. 1285-1291
[14]
Denis F..
The three column spine and its significance in the classification of acute thoracolumbar spinal injuries..
Spine. , 8 (1983), pp. 817-831
[15]
Hipp J.A..
Biomechanics of Thoracolumbar Fractures..
Biomechanics of Thoracolumbar Fractures., pp. 9-18
[16]
Perren S.M..
The concept of biological plating using the limited contact-dynamic compression plate (LC-DCP). Scientific background, design and application..
Injury. , 22 (1991), pp. 1-41
[17]
Perren S.M., Huggler A., Russenberger M., Straumann F., Muller F.E., Algower M., et-al..
Cortical bone healing..
Acta Orthop Scand. , 125 (1969), pp. 3-63
[18]
Wittner B., Holz U..
Placas..
Placas., pp. 169-230
[19]
Wilcox R.K., Boerger T.O., Hall R.M., Barton D.C., Limb D., Dickson R.A..
Measurement of canal occlusion during the thoracolumbar burst fracture process..
J Biomech. , 35 (2002), pp. 381-384
[20]
Katz J.N..
Lumbar spinal fusion. Surgical rates, costs and complications..
Spine. , 20 (1995),
[21]
Goel V.K., Pope M.H..
Biomechanics of fusion and stabilization..
Spine. , 20 (1995), pp. 35S
[22]
Goel V.K., Panjabi M.M., Kuroki H., Rengachary S.S., McGowan D., Ebraheim N..
Spinal Instrumentation..
Spinal Instrumentation., pp. 59-84
[23]
Dhawan R., Frederickson B.E., Yuan H.A..
Implant alternatives in Surgical Management..
Implant alternatives in Surgical Management., pp. 55-63
[24]
González López J.L., Soleto Martín F.J., López Valverde S., Navascués del Río J.A., Cervera Bravo P..
Resultados de la instrumentación Galveston-Luque en la escoliosis neuromuscular..
Rev Ortop Traumatol. , 3 (2002), pp. 227-233
[25]
Okuyama K., Abe E., Suzuki T., Tamura Y., Chiba M., Sato K..
Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients..
Spine. , 1 (2001), pp. 402-407
[26]
Lehman R.A., Kuklo T.R., O’Brien M.F..
Biomechanics of thoracic pedicle screw fixation. Part I – Screw biomechanics..
Sem Spine Surg. , 14 (2002), pp. 8-15
[27]
Carlson G.D., Abitbol J.J., Anderson D.R., Krag M.H., Kostuick J.P., Woo S.L., et-al..
Screw fixation in the human sacrum. An in Vitro study of the biomechanics of fixation..
Spine. , 17 (1992), pp. S196-S203
[28]
Pfeiffer M., Gilbertson L.G., Goel V.K., Griss P., Keller J.C., Ryken T.C., et-al..
Effect of specimen fixation method on pullout tests of pedicle screws..
Spine. , 21 (1996), pp. 1037-1044
[29]
Pfeiffer M., Hoffman H., Goel V.K., Weinstein J.N., Griss P..
In vitro testing of a new transpedicular stabilization technique..
Eur Spine. , 6 (1997), pp. 249
[30]
Mc Kinley T.O., Mc Lain R.F., Yerby S.A., Sarigal-Klejin N., Smith T.S..
The effect of pedicle morphometry on pedicle screw loading in a syntethic model..
Spine. , 22 (1997), pp. 246-252
[31]
Choi W, Lee S, Woo KJ, Lim S. Assessment of pullout strengths of various pedicle screw designs in relation to the changes in the bone mineral density. Dallas, Texas: 48th Annual Meeting of the Orthopedic Research Society; 2002. p. 10-3..
[32]
Caglar Y.S., Torun F., Pait T.G., Hogue W., Bozkurt M., Ozgen S..
Biomechanical comparison of inside-outside screws, cables, and regular screws, using a sawbone models..
Neurosurg Rev. , 28 (2005), pp. 53-58
[33]
Abshire B.B., Mc lain R.F., Valderbitt A., Kambic H.E..
Characteristics of pull out failure in conical and cylindrical pedicle screws after full insertion and back out..
Spine J. , 1 (2001), pp. 408-414
[34]
Lehmann T.R., Spratt K.F., Tozzi J.E., Weinstein T.N., Reinarz S.J., el-Khoury G.Y., et-al..
Long-term follow-up of lower lumbar fusion patients..
Spine. , 12 (1987), pp. 97-104
[35]
Carbone J.J., Tortolani P.J., Quartararo L.G..
Fluoroscopically Assisted Pedicle Screw Fixation for Thoracic and Thoracolumbar Injuries. Technique and Short-Term Complications..
[36]
Katonis P., Christoforakis J., Kontakis G., Aligizakis A.C., Papadopoulos C., Sapkas G., et-al..
Complications and problems related to pedicle screw fixation of the spine..
Clin Orthop. , 411 (2003), pp. 86-94
[37]
Beguiristain Gurpide J.L., Berjano Coquillat P., Alfonso Olmos M., Zubieta Zárraga J.L., Villas Tomé C..
Valoración por tomografía axial computarizada de la posición de tornillos pediculares en raquis lumbosacro..
Rev Ortop Traumatol. , 2 (2001), pp. 106-113
[38]
Steinmann J.W., Herkowitz H.N..
Pseudarthrosis of the spine..
Clin Orthop. , 284 (1992), pp. 80-90
[39]
Rapoff A.J., Ghanayem A.J., Zdeblick T.A..
Biomechanical comparison of posterior lumbar interbody fusion cages..
Spine. , 22 (1997), pp. 2375
[40]
Kettler A., Wilke H.J., Dietl R., Krammer M., Lumenta C., Claes L..
Stabilizing effect of posterior lumbar interbody fusion cages before and after cycling loading..
J Neurosurg. , 92 (2000), pp. 87-92
[41]
Lund T., Oxland T.R., Jost B., Cripton P., Grassmann S., Etter C., et-al..
Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density..
J Bone Joint Surg Br. , 80B (1998), pp. 351-359
[42]
Triviño López A., Romo Contreras I., Rubio González A., García García J., Hernández Vaquero D..
Artrodesis intersomática lumbar mediante cajas intersomáticas expansivas..
Rev Ortop Traumatol. , 1 (2002), pp. 42-46
[43]
Kai Y., Oyama M., Morooka M..
Posterior lumbar interbody fusion using local facet joint autograft and pedicle screw fixation..
[44]
Kim S.M., Lim T.J., Paterno J., Park J., Kim D.H..
Biomechanical comparison: stability of lateral-approach anterior lumbar interbody fusion and lateral fixation compared with anterior-approach anterior lumbar interbody and posterior fixation in the lower lumbar spine..
J Neurosurg Spine. , 2 (2005), pp. 62-68
[45]
Atienza Vicente C.M., Prat Pastor J.M., Peris Serra J.L., Comín Clavijo M., Molla Domenech F., Gómez Pérez A..
Estudio biomecánico de cuatro sistemas de fijación y del uso de injerto anterior en un modelo de elementos finitos de la columna lumbar..
Rev Ortop Traumatol. , 46 (2002), pp. 542-550
[46]
Sendino Revuelta M., De Frías González M., Cobo Soriano J., Álvarez Sala F., Atienza Blanco I., Cimarra Díaz I., et-al..
La instrumentación de Kaneda en la estabilización vertebral anterior..
Rev Ortop Traumatol. , 3 (2002), pp. 234-239
[47]
Lagragna N.A., Harten R.D., Lin D.C., Reiter M.F., Lee C.K..
Acute thoracolumbar burst fractures: A new view of loading mechanism..
Spine. , 27 (2002), pp. 498-508
[48]
Gaitanis I.N., Carandang G., Phillips F.M., Magovern B., Ghanayem A.J., Voronov L.I., et-al..
Restoring geometric and loading alignment of the thoratic spine with a vertebral compression fracture: effects of ballon (bone tamp) inflation and spinal extension..
[49]
Hsu J.M., Joseph T., Ellis A.M..
Thoracolumbar fracture in blunt trauma patients: Guidelines for diagnosis and imaging..
Injury. , 34 (2003), pp. 426-433
[50]
Panjabi M.M., Krag M.H., Dimmet J.C., Walter S.D., Brand R.A..
Thoracic spine centers of rotacion in the sagittal plane..
J Orthop Res. , 1 (1984), pp. 387-394
[51]
Oda I., Abumi K., Cunningham B.W., Kaneda K., Mc Afee P.C..
An in vitro human cadaveric study investigating the biomechanical properties of the thoracic spine..
Spine. , 27 (2002), pp. E64-E70
[52]
Takeuchi T., Abumi K., Shono Y., Oda I., Kaneda K..
Biomechanical role of the intervertebral disc and costovertebral joint in stability of the thoracic spine: A canine model study..
Spine. , 24 (1999), pp. 1414-1420
[53]
Oda I., Abumi K., Lu D., Shono Y., Kaneda K..
Biomechanical role of the posterior elements, costovertebral joints, and rib cage in the stability of the thoracic spine..
Spine. , 21 (1996), pp. 1423-1429
[54]
Jorgensen M.J., Marras W.S., Smith F.W., Pope M.H..
Sagittal plane moment arms of the female lumbar region rectus abdominis in an upright neutral torso posture..
Clin Biomech. , 20 (2005), pp. 242-246
[55]
Yoganadan N., Maiman D.J., Pintar F.A., Bennett G.J., Larson S.L..
Biomechanical effects of laminectomy on thoracic spine stability..
Neurosurgery. , 32 (1993), pp. 604-610
[56]
Lindsey R.W., Dick W., Nunchuck S., Zach G..
Residual intersegmental spinal mobility following limited pedicle fixation of thoracolumbar spine fractures with the fixateur interne..
Spine. , 18 (1993), pp. 474-478
[57]
Bastian L., Lange U., Knop C., Tusch G., Blauth M..
Evaluation of the mobility of adjacent segments after posterior thoracolumbar fixation: A biomechanical study..
Eur Spine J. , 10 (2001), pp. 295-300
[58]
Hunter L.Y., Braunstein E.M., Bailey R.W..
Radiographic changes following anterior cervical fusion..
Spine. , 5 (1980), pp. 399-401
[59]
Wang J.L., Panjabi M.M., Kato Y., Nguyen C., Nguyen C..
Radiography cannot examine disc injuries secondary to burst fracture: Quantitative discomanometry validation..
Spine. , 27 (2002), pp. 235-240
[60]
Kothari P., Freeman B., Grevitt M., Kerslake R..
Injury to the spinal cord without radiological abnormality (SCIWORA) in adults..
J Bone Joint Surg Br. , 82B (2000), pp. 1034-1037
[61]
Mulholland R.C..
Misuse of Implants and Devices in Spinal Surgery..
Misuse of Implants and Devices in Spinal Surgery., pp. 57-63
[62]
Mardjetko S.M., Connolly P.J., Shott S..
Degenerative lumbar spondylolisthesis. A meta-analysis of the literature 1970-1993..
Spine. , 20S (1994), pp. 2256-2261
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos