metricas
covid
Buscar en
Revista Española de Cirugía Ortopédica y Traumatología
Toda la web
Inicio Revista Española de Cirugía Ortopédica y Traumatología Proteínas morfogénicas óseas y su aplicación clínica
Journal Information
Vol. 54. Issue S1.
Proteína osteogénica tipo 1
Pages 2-10 (May 2010)
Share
Share
Download PDF
More article options
Vol. 54. Issue S1.
Proteína osteogénica tipo 1
Pages 2-10 (May 2010)
Proteína Osteogénica Tipo 1
Full text access
Proteínas morfogénicas óseas y su aplicación clínica
Bone morphogenetic protein and its clinical application
Visits
5895
F. Forriol
Unidad de Investigación, Hospital FREMAP, Majadahonda, Madrid, España
This item has received
Article information
Resumen

Las proteínas morfogénicas óseas (BMP: rhBMP-2 y rhBMP-7) se han introducido en el uso quirúrgico, durante los últimos años, para el tratamiento de las seudoartrosis de los huesos largos y en la artrodesis vertebral. Sin embargo, sus buenos resultados y el interés despertado han promovido numerosos trabajos experimentales y propuestas para aumentar sus indicaciones a otras enfermedades y situaciones. Analizar su coste, su eficacia, el transportador más adecuado para cada situación y la combinación con otros elementos es uno de los retos que tiene planteados la investigación en cirugía ortopédica.

Palabras clave:
BMP
BMP-7
Factores de crecimiento
Seudoartrosis
Hueso
Abstract

Bone morphogenetic protein (BMP: rhBMP-2 and rhBMP-7) have been introduced into the surgical use, in recent years, for the treatment of pseudoarthrosis of long bones and spinal fusion. However, its success and interest have promoted numerous experimental and proposals to increase its indications to other diseases and conditions. Analyze the cost, effectiveness, the carrier most appropriate for each situation and the combination with other elements is one of the challenges facing research in orthopedic surgery.

Keywords:
BMP
BMP-7
Growth factors
Pseudoarthrosis
Bone
Full text is only aviable in PDF
Bibliografía
[1.]
M.R. Urist, B.F. Silverman, K. Buring, F.L. Dubuc, J.M. Rosenberg.
The bone induction principle.
Clin Orthop Relat Res, 53 (1967), pp. 243-283
[2.]
M.R. Urist.
Bone: formation by autoinduction.
Science, 150 (1965), pp. 893-899
[3.]
A.H. Reddi, S. Weintroub, N. Muthukumaran.
Biologic principles of bone induction.
Orthop Clin North Am, 18 (1987), pp. 207-212
[4.]
F.C.H. Bauer, O.S. Nilsson, H. Tornquist.
Formation and resorption of bone induced by demineralized bone matrix implants in rats.
Clin Orthop Relat Res, 191 (1984), pp. 139-143
[5.]
S.T. Lindholm, M.R. Urist.
A quantitative analysis of new bone formation by induction in composite grafts of bone marrow and bone matrix.
Clin Orthop Relat Res, 150 (1980), pp. 288-300
[6.]
M. Sato, T. Ochi, T. Nakase, S. Hirota, Y. Kitamura, S. Nomura, et al.
Mechanical tension-stress induces expression of bone morphogenetic protein BMP-2 and BMP-4, but not BMP-6, BMP-7, and GDF-5 mRNA, during distraction osteogenesis.
J Bone Miner Res, 14 (1999), pp. 1084-1095
[7.]
P. Aspenberg, L.S. Lohmander, K.G. Thorngren.
Failure of bone induction by bone matrix in adult monkeys.
J Bone Joint Surg (Am), 70-A (1988), pp. 625-627
[8.]
N. Schwarz, G. Schlag, M. Thurnher, J. Eschberger, H.P. Dinges, H. Redl.
Fresh autogeneic, frozen allogeneic and decalcified allogeneic bone grafts in dogs.
J Bone Joint Surg (Br), 73-B (1991), pp. 787-790
[9.]
J.H. Healey, P.A. Zimmerman, J.M. Mcdonnell, J.M. Lane.
Percutaneous bone marrow grafting of delayed union and non union in cancer patients.
Clin Orthop Relat Res, 256 (1990), pp. 280-285
[10.]
P. Hernigou, G. Mathieu, A. Poignard, O. Manicom, F. Beaujean, H. Rouard.
Percutaneous autologous bone-marrow grafting for nonunions Surgical technique.
J Bone Joint Surg (Am), 88-A (2006), pp. 322-327
[11.]
G.R. Burwell, G.E. Friedlander, H.J. Mankin.
Current perspectives and future directions: the 1983 international conference on osteochondral allografts.
Clin Orthop Relat Res, 197 (1985), pp. 141-157
[12.]
R.S. Tuan, G. Boland, R. Tuli.
Adult mesenchymal stem cells and cell-based tissue engineering.
Arthritis Res Ther, 5 (2003), pp. 32-45
[13.]
M. Lind.
Growth factors: Possible new clinical tools. A review.
Acta Orthop Scand, 67 (1996), pp. 407-417
[14.]
G. Schmidmaier, B. Wildemann, D. Ostapowicz, F. Kandziora, R. Stange, N.P. Haas, et al.
Long-term effects of local growth factor (IGF-I and TGF-b1) treatment on fracture healing. A safety study for using growth factors.
J Orthop Res, 22 (2004), pp. 514-519
[15.]
M.B. Goldring, S.R. Goldring.
Skeletal tissue response to cytokines.
Clin Orthop Relat Res, 198 (1990), pp. 245-278
[16.]
S. Miyamoto, K. Takaoka, K. Ono.
Bone induction in mokeys by BMP: a transfilter technique.
J Bone Joint Surg (Br), 75-B (1993), pp. 107-110
[17.]
M. Laursen, K. Hoy, E.S. Hansen, J. Gelineck, F.B. Christensen, C.E. Burger, et al.
Recombinant bone morphogenetic protein-7 as an intracorporal bone growth stimulator in unstable thoracolumbar burst fractures in humans: preliminary results.
Eur Spine J, 8 (1999), pp. 485-490
[18.]
C. Jepsson, J. Astrand, M. Tagil, P. Aspenberg.
A combination of biphosphonates and BMP additives in impacted bone alografts.
Acta Orthop Scand, 74 (2003), pp. 483-489
[19.]
A.K. Harding, P. Aspenberg, M. Kataoka, D. Bylski, M. Tägli.
Manipulating the anabolic and catabolic response in bone graft remodeling: synergism by a combination of local BMP-7 and a single systemic dosis of zoledronate.
J Orthop Res, 26 (2008), pp. 1245-1249
[20.]
J.M. Wozney.
Overview of bone morphogenetic proteins.
[21.]
A.H. Reddi.
Bone morphogenetic proteins: from basic scienceto clinical aspplications.
J Bone Joint Surg (Am), 83-A (2001), pp. S1-S6
[22.]
M. Fajardo, Ch-J. Liu, K. Egol.
Levels of expression for BMP-7 and several BMP antagonists may play an integral role in a fracture nonunion. A pilot study.
Clin Orthop Relat Res, 467 (2009), pp. 3071-3078
[23.]
S.S. Rengachary.
Bone morphogenetic proteins: basic concepts.
Neurosurg Focus, 13 (2002), pp. 34-61
[24.]
M. Borden, M. Attawia, Y. Khan, S.F. El-Amin, C.T. Laurencin.
Tissueengineered bone formation in vivo using a novel sintered polymeric microsphere matrix.
Bone Joint Surg J. (Br), 86-B (2004), pp. 1200-1208
[25.]
H.C. Anderson, P.T. Hodges, X.M. Aguilera, L. Missana, P.E. Moylan.
Bone morphogenetic protein (BMP) localization in developing human and rat growth plate, metaphysis, epiphysis and articular cartilage.
J Histochem Cytochem, 48 (2000), pp. 1493-1502
[26.]
T. Nashimura, D.J. Simmons, E.G. Mainous.
The origin of bone formed by heterotopic periostal implants.
J Oral Maxillofacial Surg, 55 (1997), pp. 1265-1268
[27.]
T. Onishi, Y. Ishidou, NagamineT, K. Yone, T. Imamura, M. Kat, et al.
Distinct and overlapping patterns of localization of bone morphogenetic (BMP) family members and BMP type II receptor during fracture healing in rats.
[28.]
X. Wu, W. Shi, X. Cao.
Multiplicity of BMP signaling in skeletal development.
Ann N Y Acad Sci, 1116 (2007), pp. 29-49
[29.]
H. Behesti, J.K. Holt, J.C. Sowden.
The level of BMP-4 signaling is critical for the regulation of distinct T-box gene expression domains and growth along the dorso-ventral axis of the optic cup.
BMC Dev Biol, 6 (2006), pp. 62
[30.]
K. Tsuji, K. Cox, A. Bandyopadhyay, B.D. Harfe, C.J. Tabin, V. Rosen.
BMP4 is dispensable for skeletogenesis and fracture healing in the limb.
J Bone Joint Surg (Am), 90-A (2008), pp. 14-18
[31.]
F.S. Kaplan, J. Fiori, J. Ahn, P.C. Billings, E.M. Shore.
Dysregulation of the BMP-4 signaling pathway in fibrodysplasia ossificans progressiva.
Ann N Y Acad Sci, 1068 (2006), pp. 54-65
[32.]
X. Guo, X.F. Wang.
Signaling cross-talk between TGF-beta/BMP and other pathways.
Cell Res, 19 (2009), pp. 71-88
[33.]
G.N. Hendy, H. Kaji, H. Sowa, J.J. Lebrun, L. Canaff.
Menin and TGF-beta superfamily member signaling via the Smad pathway in pituitary, parathyroid and osteoblast.
Horm Metab Res, 37 (2005), pp. 375-379
[34.]
N. Hansen-Angelstaedt, P. Algensatedt, A. Böttcher, C. Joscheck, B. Schwarzloh, C. Schaefer, et al.
Bilaterally increased VEGFlevels in muscles during experimental unilateral callus distraction.
J Orthop Res, 21 (2003), pp. 805-812
[35.]
A. Nakamae, T. Sunagawa, O. Ishida, O. Suzuki, Y. Yasunaga, H. Hachisuka, et al.
Acceleration of surgical angiogenesis in necrotic bone with a single injection of fibroblast growth factor-2 (FGF-2).
J Orthop Res, 22 (2004), pp. 509-513
[36.]
H. Seeherman, J. Wozney, R. Li.
Bone morphogenetic protein delivery systems.
Spine, (2002), pp. S16-S23
[37.]
P. Kloen, M. DiPaola, O. Borens, J. Richmond, G. Perino, D.L. Helfet, et al.
BMP signaling components are expressed in human fracture callus.
[38.]
P. Kloen, S.B. Doty, E. Gordon, I.F. Rubel, M.J. Goumans, D.L. Helfet.
Expression and activation of the BMP-signaling components in human fracture nonunions.
J Bone Joint Surg (Am), 84-A (2002), pp. 1909-1918
[39.]
E. Tsialogiannis, I. Polyzois, Q. Oak Tang, G. Pavlou, E. Tsiridis, M. Heliotis, et al.
Targeting bone morphogenetic protein antagonists: in vitro and in vivo evidence of their role in bone metabolism.
Expert Opin Ther Targets, 13 (2009), pp. 123-137
[40.]
D. Winkler, C. Yu, J.C. Goeghegan, E.W. Ojala, K.E. Skonier, D. Shpektor, et al.
Noggin and sclerostin bone morphogenetic protein antagonists form a mutually inhibitory complex.
J Biol Chem, 279 (2004), pp. 36293-36298
[41.]
E. Abe, M. Yamamoto, Y. Taguchi, B. Lecka-Czernik, C.A. O’Brien, A.N. Econimides, et al.
Essential requirement of BMPs-2/4 for both osteoblast and osteoclast formation in murine bone marrow cultures from adult mice: antagonism by noggin.
J Bone Miner Res, 15 (2000), pp. 663-673
[42.]
V. Rosen.
BMP and BMP inhibitors in bone.
Ann N Y Acad Sci, 1068 (2006), pp. 19-25
[43.]
T.A. Einhorn, R.J. Majeska, A. Mohaideen, E.M. Kagel, M.L. Bouxsein, T.J. Turek, et al.
single percutaneous injection of recombinant human bone morphogenetic protein-2 accelerates fracture repair.
Bone Joint Surg J. (Am), 85-A (2003), pp. 1425-1435
[44.]
Y. Mizumoto, T. Moseley, M. Drews, V.N. Cooper, H. Reddi.
Acceleration of regenerate ossification during distraction osteogenesis with recombinant human bone morphogenetic protein-7.
J Bone Joint Surg (Am), 85-A (2003), pp. 124-130
[45.]
J.R. Lieberman, A. Daluiski, T.A. Einhorn.
The role of growth factors in the repair of bone.
Bone Joint Surg J. (Am), 84-A (2002), pp. 1034-1044
[46.]
L.R. Giltaij, A. Shimmin, G.E. Friedlaender.
Osteogenic protein-1 (OP-1) in the repair of bone defects and fractures of long bones: clinical experience.
Bone morphogenetic proteins: from laboratory to clinical practice,
[47.]
H.J. Seeherman, R. Li, M.L. Bouxsein, H. Kim, X.J. Li, E.A. Smith-Adaline, et al.
Rh-BMP-2/Calcium phosphate matrix accelerates osteotomy-site healing in a nonhuman primate model at multiple treatment times and concentrations.
J Bone Joint Surg (Am), 88-A (2006), pp. 144-160
[48.]
R.B. Edwards, H.J. Seeherman, J.J. Bogdanske, J. Devitt, R. Vanderby, M.D. Markel.
Percutaneous injection of recombinant human bone morphogenetic protein-2 in a calcium phosphate paste accelerates healing of a canine tibial osteotomy.
Bone Joint Surg J. (Am), 86-A (2004), pp. 1425-1438
[49.]
D.R. Summer, T.M. Turner, R.M. Urban, T. Turek, H. Seeherman, J.M. Wozney.
Locally delivered rhBMP-2 enhances bone ingrowth and gap healing in a canine model.
J Orthop Res, 22 (2004), pp. 58-65
[50.]
J.C. Roldán, S. Jepsen, J. Miller, S. Freitag, D.C. Rueger, Y. Açil, et al.
Bone formation in the presence of platelet-rich plasma vs. Bone morphogenetic protein-7.
[51.]
F. Forriol, G.U. Longo, C. Concejo, P. Ripalda, N. Maffulli, V. Denaro.
Platelet-rich-plasma, rhOP-1® (BMP-7) and frozen rib allograft for the reconstruction of bony mandibular defects in sheep. A pilot experimental study.
[52.]
R.G. Geesink, N.H. Hoefnagels, S.K. Bulstra.
Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect.
J Bone Joint Surg (Br), 81-B (1999), pp. 710-718
[53.]
F.N. Kwong, J.A. Hoyland, A.J. Freemont, C.H. Evans.
Altered relative expression of BMPs and BMP inhibitors in cartilaginous areas of human fractures progressing towards nonunion.
J Orthop Res, 27 (2009), pp. 752-757
[54.]
European Medicines Agency, Committee for Medicinal Products for human use. European Public Assessment Report (EPAR): Osigraft, EMEA/H/C/393 [citado 1 Nov 2007]. Disponible en: http://www.emea.europa.eu/humandocs/PDFs/EPAR/osigraft/039301en1.pdf
[55.]
G.E. Friedlander, C.R. Perry, J.D. Cole, S.D. Cook, G. Clerny, G.F. Muschler, et al.
Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions.
J Bone Joint Surg (Am), 83-A (2001), pp. S151-S158
[56.]
M. Pecina, M. Haspl, M. Jelic, S. Vukicevic.
Repair of a resistant tibia non-union with a recombinant bone morphogenetic protein-7 (rh-BMP-7).
Inbt Orthop, 27 (2003), pp. 320-321
[57.]
European Medicines Agency, Committee for Medicinal Products for human use. Post-authorisation summary of opinion for inductos. 2005 Feb 17 [citado 1 Nov 2007]. EMEA/57906/2005. http://www.emea.europa.eu/pdfs/human/opinion/5790605en.pdf
[58.]
S. Govender, C. Csimma, H.K. Genant, A. Valentin-Opran, (BMP-2 Evaluation in Surgery for Tibial Trauma) Study Group BESTT..
Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures.
Bone Joint Surg J. (Am), 84-A (2002), pp. 2123-2134
[59.]
M.F. Swiontkowski, H.T. Aro, S. Donell, J.L. Esterhai, J. Goulet, A. Jones, et al.
Recombinant human bone morphogenetic protein-2 in open tibial fractures subgroup analysis of data combined from two prospective randomized A. studies.
Bone Joint Surg J. (Am), 88-A (2006), pp. 1258-1265
[60.]
R.H. Li, M.L. Bouxsein, C.A. Blake, D. D’Augusta, H. Kim, X.J. Li, et al.
RhBMP-2 injected in a calcium phosphate paste (a-BSM) accelerates healing in the rabbit lunar osteotomy model.
J Orthop Res, 21 (2003), pp. 997-1004
[61.]
H.S. Sandhu.
Bone morphogenetic proteins spinal surgery.
Spine, (2003), pp. S64-S73
[62.]
S.D. Boden, T.A. Zdeblick, H.S. Sandhu, S.E. Heim.
The use of rh- BMP-2 in interbody fusion cages Definitive evidence of osteoinduction in humans: a preliminary report.
[63.]
J.K. Burkus, M.F. Gornet, C.A. Dickman, T.A. Zdeblick.
Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages.
J Spinal Disord Tech, 15 (2002), pp. 337-349
[64.]
Y. Yoshimura, S. Nomura, S. Kawasaki, T. Tsutsumimoto, T. Shimizu, K. Takaoka.
Colocalization of noggin and bone morphogenetic protein-4 during fracture healing.
J Bone Miner Res, 16 (2001), pp. 876-884
[65.]
O. Holbein, C. Neidlinger-Wilke, G. Suger, L. Kinzl, L. Claes.
Ilizarov callus distraction produces systemic bone cell mitogens.
J Orthop Res, 13 (1995), pp. 629-638
[66.]
M. Mandu-Hrit, T. Haque, D. Lauzier, M. Kotsioprifitis, F. Rauch, M. Tabrizian, et al.
Early injection of OP-1 during distraction osteogenesis accelertates new bone formation in rabbits.
Growth Factors, 24 (2006), pp. 172-183
[67.]
C. Eingartner, S. Coerper, J. Fritz, C. Gaissmaier, G. Koveker, K. Weise.
Growth factors in distraction osteogenesis Immunohistological pattern of TGF-beta1 and IGF-I in human callus induced by distraction osteogenesis.
Int Orthop, 23 (1999), pp. 253-259
[68.]
S. Tsubota, H. Tsuchiya, Y. Shinokawa, K. Tomita, H. Minato.
Transplantation of osteoblast-like cells to the distracted callus in rabbits.
J Bone Joint Surg (Br), 81-B (1999), pp. 125-129
[69.]
Y. Tang, W. Tang, Y. Lin, J. Long, H. Wang, L. Liu, et al.
Combination of bone tissue engineering and BMP-2 gene transfection promotes bone healing in osteoporotic rats.
Cell Biol Int, 32 (2008), pp. 1150-1157
[70.]
M. Bostrom, J. Lane, E. Tomin, M. Browne, W. Berberian, T. Turek, et al.
Use of bone morphogenetic protein-2 in the rabbit ulna nonunion model.
Clin Orthop Relat Res, 327 (1996), pp. 272-282
[71.]
C. Kirker-Head, V. Karageorgiou, S. Hofmann, R. Fajardo, O. Betz, H.P. Merkle, et al.
BMP-silk composite matrices heal critically sized femoral defects.
Bone, 41 (2007), pp. 247-255
[72.]
S. Sarban, A. Senkoylu, U.E. Isikan, P. Korkusuz, F. Korkusuz.
Can rhBMP-2 containing collagen sponges enhance bone repair in ovariectomized rats?.
Clin Orthop Relat Res, 467 (2009), pp. 3113-3120
[73.]
M. Kanatani, T. Sugimoto, H. Kaji.
Stimulatory effect of bone morphogenic protein -2 on osteoclastlike cell formation and bone resorbing activity.
J Bone Min Res, 10 (1995), pp. 1681-1690
[74.]
M. Okamoto, J. Murai, H. Yoshikawa, N. Tsumaki.
Bone morphogenetic proteins in bone stimulate osteoclasts and osteoblasts during bone development.
J Bone Miner Res, 21 (2006), pp. 1022-1033
[75.]
M. Egermann, C.A. Lill, K. Griesbeck, C.H. Evans, P.D. Robbins, E. Schneider, et al.
Effect of BMP-2 gene transfer on bone healing in sheep.
Gene Therapy, 13 (2006), pp. 1290-1299
[76.]
B. Perri, M. Cooper, C. Lauryssen, N. Anand.
Adverse swelling associated with use of rhBMP-2 in anterior cervical discectomy fusion: a case study.
Spine J, (2007), pp. 235-239
[77.]
H.S. Sandhu, D.G. Anderson, G.B.J. Andersson, S.D. Boden, C. Damien, S. Ebara, et al.
Summary statement: alternative delivery by gene therapy and cost justification of bone orphogenetic proteins for spine fusion.
Spine, 27 (2002), pp. S86
[78.]
G.B. Bishop, T.A. Einhorn.
Current and future clinical applications of bone morphogenetic proteins in orthopaedic trauma surgery.
Int Orthop, 31 (2007), pp. 721-727
[79.]
T. Axelrad, B. Steen, D. Lowenberg, W. Creevy, T. Einhorn.
Heterotopic ossification after the use of commercially available recombinant humman bone morphogenetic proteins in four patients.
J Bone Joint Surg (Br), 90-B (2008), pp. 1617-1622
[80.]
R. Wysocki, M. Cohen.
Ectopic ossification of the triceps muscle afterapllication of bone morphogenetic protein-7 to the distal humerus for recalcitrant nonunions: a case report.
J Hand Surg Am, 32 (2007), pp. 647-650
[81.]
P. Giannoudis, N. Kanakaris, T. Einhorn.
Interaction of bone morphogenetic proteins with cells of the osteoclast lineage: review of the existing evidence.
Osteoporos Int, 18 (2007), pp. 1565-1581
[82.]
N. Alam, R. St-Arnaud, D. Lauzier, V. Rosen, R.C. Hamdy.
Are endogenous BMPs necessary for bone healing during distraction osteogenesis?.
Clin Orthop Relat Res, 467 (2009), pp. 3190-3198
[83.]
Y.C. Huang, D. Kaigler, K.G. Rice, P.H. Krebsbach, D.J. Mooney.
Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration.
J Bone Mineral Res, 20 (2005), pp. 848-857
[84.]
P.V. Giannoudis, N.K. Kanakaris, R. Dimitriou, I. Gill, V. Kolimarala, R.J. Montogomery.
The synergistic effect of autograft and BMP-7 in the treatment of atrophic nonunions.
Clin Orthop Relat Res, 467 (2009), pp. 3239-3248
[85.]
N.K. Kanakaris, G.M. Calori, R. Verdonk, P. Burssens, P. De Biase, R. Capanna, et al.
Application of BMP-7 to tibial nonunions: a 3-year multicenter experience.
[86.]
M. Ronga, F. Baldo, G. Zappala, P. Cherubino.
Recombinant human bone morphogenetic protein-7 for treatment of long bone nonunion: an obsevational, retrospective, non-randomized study of 105 patients.
[87.]
G. Zimmermann, U. Müller, C. Loffler, A. Wentzensen, A. Moghaddam.
Therapieerfolg bei atrophen Tibiaschaftpseudoarthrosen.
Unfallchirurg, 110 (2007), pp. 931-938
[88.]
G. Mundy, R. Garrett, S. Harris, J. Chan, D. Chen, G. Rossini, et al.
Stimulation of bone formation in vitro and in rodents by statins.
Science, 286 (1999), pp. 1946-1949
[89.]
B. Skoglund, C. Forslund, P. Aspenberg.
Simvastatin improves fracture healing in mice.
J Bone Miner Res, 17 (2002), pp. 2004-2008
[90.]
P. Giannoudis, T. Einhorn, D. Marsch.
Fracture healing: The diamond concept.
Injury, 38 (2007), pp. S3-S4
Copyright © 2010. Sociedad Española de Cirugia Ortopédica y Traumatología (SECOT)
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos