metricas
covid
Buscar en
Revista Española de Cirugía Ortopédica y Traumatología (English Edition)
Toda la web
Inicio Revista Española de Cirugía Ortopédica y Traumatología (English Edition) Bone tissue engineering. Design and development of biologically active vitrocera...
Journal Information
Vol. 54. Issue 1.
Pages 59-68 (January - February 2010)
Share
Share
Download PDF
More article options
Vol. 54. Issue 1.
Pages 59-68 (January - February 2010)
Original papers
Full text access
Bone tissue engineering. Design and development of biologically active vitroceramic-based hybrid materials to be used as bone substitutes
Ingeniería tisular del tejido óseo. Diseño y desarrollo de materiales híbridos biológicamente activos basados en vitrocerámicas para sustitución ósea
Visits
1407
L. Meseguer-Olmoa,
Corresponding author
, A. Bernabeu-Escapleza, M. Vallet-Regíb, S. Aznar-Cervantesa, V. Vicente-Ortegaa, M. Alcaraz-Bañosc, M. Clavel-Sainza, A. Herrera-Rodríguezd, F. Lopez-Pratse, J.M. Moraleda-Jiméneza, C.L. Meseguer-Ortiza
a Cell Therapy - Bone Bioengineering Unit, Virgen de la Arrixaca University Hospital, Universidad de Murcia, Murcia, Spain
b Inorganic and Bioinorganic chemistry department, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
c Physical Medicine-radiology department, University of Murcia, Murcia, Spain
d COT service, Miguel Servet Hospital, University of Zaragoza, Zaragoza, Spain
e Orthopaedic surgery and Traumatology class, Miguel Hernández University, Elche, Alicante, Spain
This item has received
Article information
Abstract
Purpose

To describe the development and characterisation of a vitroceramic material as well as the initial response of adult mesenchymal stem cells (MSCs-A) isolated from bone marrow.

Material and methodology

The material was obtained by heating glass with composition in mol% 55SiO2-41CaO-4P2O5 by a sol gel method. Cells were isolated from direct iliac crest aspirates from young adult patients. An analysis was performed of the degree of adhesion, proliferation and osteoblastic differentiation of MSCs-A seeded onto the material. Cell differentiation was evaluated through the production of osteocalcin and the loss of the CD90 mesenchymal marker. Cell proliferation on the substrate was performed using the tetrazolium salt reduction method. The seeded material was implanted in a critical defect caused in a rabbit femur in order to determine its osteogenerating capacity; CT observations were carried out.

Results

MSCs-A se bound to the material, expanded, proliferated and produced mineralised extracellular matrix on the material during the culture period. At the same time, they showed an osteoblastic phenotype, increasing osteocalcin production and losing CD90 expression. The material was partially resorbed at the end of the study.

Conclusion

The material is cytocompatible, osteoconductive, bioactive and has a capacity to promote osteoblastic differentiation of MSCs-A as well as new bone formation following its implantation in association with MSCs-A; an appropriate matrix for bone tissue regeneration.

Keywords:
Glass-ceramic
Scaffold
Adults mesenchymal stem cell
Osteoblast
Bone defect
Resumen
Objetivo

Describir el desarrollo y caracterización de un material vitrocerámico y la respuesta inicial de células madre mesenquimales adultas (MSC-A) aisladas de la medula ósea.

Material y metodología

El material se obtuvo por calentamiento de un vidrio 55SiO2-41CaO-4P2O5 (mol/%) por el método sol-gel. Las células se aislaron por aspirados directos de cresta ilíaca de pacientes adultos jóvenes. Se estudió el grado de adherencia, proliferación y diferenciación a osteoblastos de las MSC-A sembradas sobre el material. La diferenciación celular se evaluó mediante la producción de osteocalcina y la pérdida del marcador mesenquimal CD90. La proliferación celular sobre el sustrato se realizó mediante el ensayo de reducción de sales de tetrazolio. El material sembrado se implantó en un defecto crítico realizado en fémur de conejo para valorar su capacidad osteorregeneradora, y se observó mediante TAC.

Resultados

Las MSC-A se adhirieron, expandieron, proliferaron y produjeron matriz extracelular mineralizada sobre el material durante el tiempo en cultivo, al mismo tiempo que mostraron fenotipo osteoblástico, e incrementaron la producción de osteocalcina y la pérdida de expresión de CD90. El material se reabsorbió parcialmente al final del estudio.

Conclusión

El material es citocompatible, osteoconductor, bioactivo, con capacidad de promover la diferenciación de MSC-A a osteoblastos y la neoformación ósea después de su implantación en asociación con MSC-A; es una matriz adecuada para la regeneración del tejido óseo.

Palabras clave:
Cerámica vítrea
Andamiaje
Células madre mesenquimales adultas
Osteoblastos
Defecto óseo
Full text is only aviable in PDF
References
[1.]
M. Jarcho, C.H. Bolen, M.B. Thomas, J. Bobick, J. Kay.
Hydroxyapatite synthesis and characterization in dense polycrystalline form.
J Mater Sci, 11 (1976), pp. 2027-2031
[2.]
K. De Groot.
Bioceramics consisting of calcium phosphate salts.
Biomaterials, 1 (1980), pp. 47-50
[3.]
C.P. Klein.
Different calcium phosphate bioglass ceramics implanted in rabbit cortical bone. An interface study.
Biomaterials, 5 (1984), pp. 362-364
[4.]
S. Nade, L. Armstrong, E. McCartney, B. Baggaley.
Osteogenesis after bone and bone marrow transplantation. The ability of ceramic materials to sustain osteogenesis from transplanted bone marrow cells: Preliminary studies.
Clin Orthop Relat Res, 181 (1983), pp. 255-263
[5.]
J. Goshima, V.M. Goldberg, Al. Caplan.
Osteogenic potential of culture-expanded rat marrow cells as assayed in vitro with porous calcium phosphate ceramic.
Biomaterials, 12 (1991), pp. 253-258
[6.]
K.D. Johnson, K.E. Frierson, T.S. Keller, C. Cook, R. Scheinberg, J. Zerwekh, et al.
Porous ceramics as bone graft substitutes in long bone defects: A biomechanical, histological, and radiographic analysis.
J Orthop Res, 14 (1996), pp. 351-369
[7.]
A. El Ghannam, P. Ducheyne, I.M. Shapiro.
Foormation of surface reaction products on bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extracellular matrix.
Biomaterials, 18 (1997), pp. 295-303
[8.]
J. Yao, S. Radin, P.H.S. Leboy, P. Ducheyne.
The effect of bioactive glass content on synthesis and bioactivity of composite ply (lactic-co-glycolic acid)/bioactive glass substrate for tissue engineering.
Biomaterials, 26 (2005), pp. 1935-1943
[9.]
M. Vallet-Regi, J. Roman, S. Padilla, J.C. Doadrio, F.J. Gil.
Bioactivity and mechanical properties of SiO2-CaO-P2O5 glass-ceramics.
J Mater Chem, 15 (2005), pp. 1353-1359
[10.]
M. Bosetti, L.L. Hench, L. Zanardi, M. Cannas.
Type I collagen production by osteoblat-like cells cultured in contact with different bioactive glasses.
J Biomed Mater Res, 64 (2003), pp. 189-195
[11.]
M. Bossetti, M. Cannas.
The effect of bioactive glasses on bone marrow stromal cells differentiation.
Biomaterials, 26 (2005), pp. 3873-3879
[12.]
J. Roman, S. Padilla, M. Vallet-Regi.
Sol-gel glasses as precursors of bioactive glass ceramics.
Chem Mater, 15 (2003), pp. 798-806
[13.]
S. Padilla, S. Sánchez-Salcedo, M. Vallet-Regi.
Bioactive glass as precursor of designed-architecture scaffolds for tissue engineering.
J Biomed Mater Res A, 81 (2007), pp. 224-232
[14.]
P. Keeting, M. Oursler, K. Wiegand, S. Bonde, T. Spelsberg, B. Riggs, et al.
A increase proliferation, differentiation, and transforming growth factor beta production in normal adult human osteoblastic-like cells in vitro.
J Bone Miner Res, 7 (1992), pp. 1281-1289
[15.]
D. Bushinsky.
Metabolic alkalosis dcrease bone calcium efflux by suppressing osteoclasts and stimulating osteoblast.
A J Physiol, 271 (1996), pp. F216-F222
[16.]
E. Carlisle.
Silicon: A requirement in bone formation independent of vitamin D1.
Calcif Tissue Int, 53 (1993), pp. 174-179
[17.]
L. Meseguer, J. Muñoz, A. Bernabeu, M. Clavel, D. Arcos, M. Vallet, et al.
Cinética de crecimiento in vitro de osteoblastos humanos sobre cerámica porosa de hidroxiapatita.
Rev Ortop Traumatol, 50 (2006), pp. 224-232
[18.]
I.D. Xynos, A.J. Edgar, L.D.K. Buttery, L.L. Hench, J.M. Polak.
Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass (R) 45S5 dissolution.
J Biomed Mater Res, 55 (2001), pp. 151-157
[19.]
N. Patel, S.M. Best, W. Bonfield, I.R. Gibson, K.A. Hing, E. Damien, et al.
A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules.
J Mater Sci Mater Med, 13 (2002), pp. 1199-1206
[20.]
W.C.A. Vrouwenvelder, C.G. Groot, K. Degroot.
Histological and biochemical evaluation of osteoblasts cultured on bioactive glass, hydroxylapatite, titanium-alloy, and stainless-steel.
J Biomed Mater Res, 27 (1993), pp. 465-475
[21.]
K. Anselme.
Osteoblast adhesion on biomaterials.
Biomaterials, 21 (2000), pp. 667-681
[22.]
C. Vitale-Brovarone, E. Verné, L. Robiglio, P. Appendino, F. Bassi, G. Martinasso, et al.
Development of glass-ceramic scaffolds for bone tissue engineering: Characterisation, proliferation of human osteoblast and nodule formation.
Acta Biomater, 3 (2007), pp. 199-208
[23.]
P.F. O’Loughlin, S. Morr, L. Bogunovic, A.D. Kim, B. Park, J.M. Lane.
Selection and development of preclinical models in fracture-healing research.
J Bone Joint Surg Am, 90 (2008), pp. 79-84
[24.]
S.P. Bruder, K.H. Kraus, V.M. Goldberg, S. Kadiyala.
The effect of implant loaded with autologous mesenchymal stem cells on the healing of canine segmental defects.
J Bone Joint Surg (Am), 80-A (1998), pp. 985-996
[25.]
M. Raschke, S. Kolbeck, H. Bail, G. Schmidmater, A. Flyvbjerg, T. Lindner, et al.
Homologous growth hormone accelerates healing of segmental bone defects.
Bone, 29 (2001), pp. 368-373
[26.]
T.L. Arinzeh, S.J. Peter, M.P. Archambault, C.H. van den Bos, S. Gordon, K. Kraus, et al.
Allogeneic mesnchymal stem cells regenerate bone in a critical-sized canine segmental defect.
J Bone Joint Surg (Am), 85-A (2003), pp. 1927-1935
[27.]
M. Di Nicola, C. Carlo-Stella, M. Magni, M. Milanesi, P.D. Longoni, P. Matteucci, et al.
Human bone marrow stroma cells suppressT-lymphocytes proliferation induced by cellular or nonspecific mitogenic stimuli.
Blood, 99 (2002), pp. 3838-3843
[28.]
A. Bartholomew, C. Sturgeon, M. Slatskas, K. Ferrer, K. McIntosh, S. Patil, et al.
Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo.
Exp Hematol, 30 (2002), pp. 42-48
[29.]
D. Gazit, G. Turgeman, P. Kelley, E. Wang, M. Jalenak, Y. Zilberman, et al.
Engineered pluripotent mesenchymal stem cells integrate and differentate in regenerating bone: A novel cell-mediated gene terapy.
Copyright © 2010. Sociedad Española de Cirugía Ortopédica y Traumatología (SECOT). All rights reserved
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos