metricas
covid
Buscar en
Revista Española de Cirugía Ortopédica y Traumatología (English Edition)
Toda la web
Inicio Revista Española de Cirugía Ortopédica y Traumatología (English Edition) Densitometric and finite-element analysis of bone remodeling further to implanta...
Journal Information
Vol. 52. Issue 5.
Pages 269-282 (September - October 2008)
Share
Share
Download PDF
More article options
Vol. 52. Issue 5.
Pages 269-282 (September - October 2008)
Original paper
Full text access
Densitometric and finite-element analysis of bone remodeling further to implantation of an uncemented anatomical femoral stem
Estudio densitométrico y con elementos finitos de la remodelación ósea tras la implantación de un vástago femoral anatómico no cementado
Visits
1496
A. Herreraa,b,
Corresponding author
aherrera@salud.aragon.es

Corresponding author: Paseo de Isabel la Católica, 1-3. 50009 Zaragoza. Spain.
, J.J. Paniselloa,b, E. Ibarzc, J. Cegoñinoc, J.A. Puértolasd, L. Graciac
a Department of Surgery. University of Zaragoza. Zaragoza. Spain
b Department of Orthopedic and Trauma Surgery. Miguel Servet University Hospital. Zaragoza. Spain
c Department of Mechanical Engineering. University of Zaragoza. Spain
d Department of Materials Science and Technology. University of Zaragoza. Spain
This item has received
Article information
Abstract
Introduction

Implantation of a femoral stem changes the load transmission dynamics in the hip and gives rise to the so-called adaptive remodeling. The goal pursued by all stems, whether cemented or not, is to achieve a perfect load transmission mechanism in order to avoid the phenomenon of stress-shielding, which may cause proximal bone devitalization.

Materials and methods

In order to quantify bone mass variations in the 7 Gruen zones, a serial DEXA analysis was carried out in 80 patients, with preoperative measurements as well as postoperative measurements at 6 months and 1, 3, 5, 7 and 10 years post implantation.

Results and conclusions

Finite-element (FE) simulations make it possible to characterize the biomechanical changes that occur in the femur further to implantation of a prosthetic stem, as well as the stem's long-term performance. The purpose of our study is to determine whether the results of the simulation can explain the biomechanical changes that may lie behind the evolution of bone density observed through DEXA scanning after implantation of an uncemented anatomical stem.

The results of the FE simulation show an excellent match between the bone loss observed on DEXA scans and the evolution of stress patterns observed in each of the Gruen zones, which confirms that even if the stem implanted was metaphyseal, stress shielding was manifest in the proximal femoral area, giving rise to the devitalization of bone in Gruen zones 1 and 7.

Key words:
bone remodeling
DEXA scan
finite-element analysis
hip prosthesis
Resumen
Introducción

La implantación de un vástago femoral cambia las condiciones de transmisión de carga de la cadera, produciendo el denominado remodelamiento adaptativo. El objetivo de todos los vástagos (cementados y no cementados) ha sido conseguir una perfecta transmisión de cargas que evite los fenómenos de puenteo de fuerzas o stress-shielding, que a su vez producen una desvitalización ósea proximal.

Material y método

Para cuantificar las variaciones de la masa ósea en las 7 zonas de Gruen se ha realizado un estudio seriado a 10 años con DEXA en 80 pacientes, con mediciones en el pre y posoperatorio, 6 meses posperatorio, y a 1, 3, 5, 7 y 10 años tras la implantación de la prótesis.

Resultados y conclusiones

La simulación con elementos finitos (EF) permite caracterizar los cambios biomecánicos que se producen en el fémur tras la implantación de un vástago protésico, así como su comportamiento a largo plazo. El objetivo de nuestro estudio es comprobar si los resultados de la simulación explican los cambios biomecánicos que justifiquen la evolución de la densidad ósea obtenida mediante el estudio con DEXA, tras la implantación de un vástago anatómico no cementado.

Los resultados de la simulación con EF presentan un perfecto paralelismo entre las pérdidas de masa ósea detectadas con la DEXA y la evolución tensional en cada zona de Gruen, lo que confirma que aunque el diseño de la prótesis es de apoyo metafisario, se produce un claro fenómeno de puenteo de fuerzas en la zona proximal del fémur, todo lo cual produce una desvitalización ósea en las zonas 1 y 7 de Gruen.

Palabras clave:
remodelado óseo
estudio con DEXA
elementos finitos
prótesis de cadera
Full text is only aviable in PDF
References
[1.]
R. Huiskes, H. Weinans, M. Dalstra.
Adaptative bone remodelling and biomechanical design considerations for noncemented total hip arthroplasty.
Orthopedics, 12 (1989), pp. 1255-1267
[2.]
C.J. Sychter, C.A. Engh.
The influence of clinical factor on periprosthetic bone remodelling.
Clin Orthop, 322 (1996), pp. 285-292
[3.]
H.E. Rubash, R.K. Sinha, A.S. Shanbhag, S.Y. Kim.
Pathogenesis of bone loss after total hip arthroplasty.
Orthop Clin North Am, 29 (1998), pp. 173-186
[4.]
J. McAuley, C.H. Sychterz, C.A. Ench.
Influence of porous coating level on proximal femoral remodelling.
Clin Orthop, 371 (2000), pp. 146-153
[5.]
C.E.R. Gibbons, A.J. Davies, A.A. Amis, H. Olearnik, B.C. Parker, J.E. Scott.
Periprosthetic bone mineral density changes with femoral components of different design philosophy.
In Orthop, 25 (2001), pp. 89-92
[6.]
A.H. Glassman, R.D. Crowninshield, R. Schenck, P. Herberts.
A low stiffness composite biologically fixed prostheses.
Clin Orthop, 393 (2001), pp. 128-136
[7.]
M. Tanzer, W.J. Maloney, M. Jasty, W.H. Harris.
The progression of femoral cortical osteolysis in association with total hip arthroplasty without cement.
J Bone Joint Surg Am, 74A (1992), pp. 404-410
[8.]
W. Bugbee, W. Culpepper, A. Engh, C.A. Engh.
Long-term clinical consequences of stress-shielding after total hip arthroplasty without cement.
J Bone Joint Surg Am, 79A (1997), pp. 1007-1012
[9.]
E.J. Hellman, W.N. Capello, J.R. Feinberg.
Omnifit cementless total hip arthroplasty: A 10-years average follow up.
Clin Orthop, 364 (1999), pp. 164-174
[10.]
C.A. Engh Jr., A.M. Young, C.A. Engh Sr., R.H. Hopper Jr..
Clinical consequences of stress shielding after porous-coated total hip arthroplasty.
Clin Orthop Relat Res, 417 (2003), pp. 157-163
[11.]
R.K. Sinha, D.S. Dungy, H.B. Yeon.
Primary total hip arthroplasty with a proximally porous-coated femoral stem.
J Bone Joint Surg Am, 86A (2004), pp. 1254-1261
[12.]
A. Braun, J. Papp, A. Reiter.
The periprosthetic bone remodelling process signs of vital bone reaction.
Int Orthop, 27 (2003), pp. 7-10
[13.]
A. Herrera, V. Canales, J. Anderson, C. García-Araujo, A. Murcia-Mazon, A.J. Tonino.
Seven to ten years follow up of an anatomic hip protesis.
Clin Orthop, 423 (2004), pp. 129-137
[14.]
V. Canales, J.J. Panisello, A. Herrera, A. Peguero, A. Martínez, L. Herrero, et al.
Ten year follow-up of an anatomical hydroxyapatite-coated total hip prosthesis.
Int Orthop, 30 (2006), pp. 84-90
[15.]
A.J. Tonino, M. Therin, C. Doyle.
Hydroxyapatite coated femoral stems: Histology and histomorphometry around five components retrieved at postmortem.
J Bone Joint Surg [Br], 81B (1999), pp. 148-154
[16.]
C. Nourissat, J. Adrey, D. Berteaux, A. Gueret, C. Goalard, G. Hamon.
The ABG Standar hip prosthesis: Five year results.
Hydroxiapatite coated hip and knee arthroplasty, pp. 227-238
[17.]
C.A. Engh Jr., J.P. Mc Auley, C.J. Sychterz, M.E. Sacco.
Engh CA Sr The accuracy and reproducibility of radiographic assessment of stress-shielding.
J Bone Joint Surg Am, 82A (2000), pp. 1414-1420
[18.]
H. Kröger, H. Miettinen, I. Arnala, E. Koski, N. Rushton, O. Suomalainen.
Evaluation of periprosthetic bone using dual energy x-ray absorptiometry: precision of the method and effect of operation on bone mineral density.
J Bone Miner Res, 11 (1996), pp. 1526-1530
[19.]
L. Rosenthall, J.D. Bobyn, M. Tanzer.
Bone densitometry: influence of prosthetic design and hydroxyapatite coating on regional adaptative bone remodelling.
Int Orthop, 23 (1999), pp. 325-329
[20.]
R. Schmidt, T. Nowak, L. Mueller, R. Pitto.
Osteodensitometry after total hip replacement with uncemented taper-design stem.
Int Orthop, 28 (2004), pp. 74-77
[21.]
R.C. Smart, S. Barbagallo, G.L. Slater, R.S. Kuo, S.P. Butler, R.P. Drummond, et al.
Measurement of periprosthetic bone density in hip arthroplasty using a dual energy X-ray absorptiometry.
J Arthroplasty, 11 (1996), pp. 445-452
[22.]
J.J. Panisello, L. Herrero, V. Canales, A. Herrera, A. Martínez, J. Mateo.
Long-term remodelling in proximal femur around a hydroxyapatite-coated anatomic stem. Ten years densitometric follow-up.
J Arthroplasty, (2008),
[23.]
Oldani CR, Domínguez AA. Simulación del comportamiento mecánico de un implante de cadera. Anales del 15.° Congreso Argentino de Bioingeniería; Septiembre 2005. Ciudad de Paraná, Entre Ríos, Argentina. Soporte CD.
[24.]
C.A. Torrenegra.
Análisis estructural de endoprótesis para cadera, utilizando un modelo de elementos finitos.
Umbral Científico, 4 (2004), pp. 21-28
[25.]
A.Z. Senalp, O. Kayabasi, H. Kurtaran.
Static, dynamic and fatigue behaviour of newly designed stem shapes for hip prosthesis using finite element analysis.
Materials and Desing, 28 (2007), pp. 1577-1583
[26.]
O. Kayabasi, F. Erzincanli.
Finite element modelling and analysis of a new cemented hip prosthesis.
Advances in Engineering Software, 37 (2006), pp. 477-483
[27.]
V.M. Domínguez-Hernández, M.F. Carbajal, G. Urriolagoitia, L.H. Hernández, G. Rico, Z. Damián-Noriega, et al.
Biomecánica de un fémur sometido a carga. Desarrollo de un modelo tridimensional por medio del método del elemento finito.
Rev Mex Ortop Traum, 13 (1999), pp. 633-638
[28.]
Zeman ME, Cerrolaza M, García JM, Doblaré M. Análisis comparativo F.E.M. 3D de la interacción entre el hueso femoral proximal y una prótesis de cadera utilizando un modelo de remodelación basado en mecánica del daño. Mérida (Venezuela): 5.° Congreso Iberoamericano de Ingeniería Mecánica; 2001 p. 69-74.
[29.]
V.M. Domínguez-Hernández, V.H. Ramos, C.V. Feria, G. Urriolagoitia, L.H. Hernández.
Efecto del espesor de la capa de cemento en el componente femoral de una prótesis de Charnley. Análisis biomecánico mediante el método del elemento finito.
Rev Mex Ortop Traum, 14 (2000), pp. 443-448
[30.]
J.H. Kuiper, R. Huiskes.
The predictive value of stress shielding for quantification of adaptative bone resorption around hip replacement.
J Biomech Eng, 119 (1997), pp. 228-231
[31.]
H. Weinans, R. Huiskes, H.J. Grootenboer.
Effects of fit and bonding characteristics of femoral stems on adaptative bone remodelling.
J Biomech Eng, 116 (1994), pp. 393-400
[32.]
J. Kerner, R. Huiskes, G.H. van Lenthe, H. Weinans, B. van Rietbergen, C.A. Engh, et al.
Correlation between pre-operative periprosthetic bone density and post-operative bone loss in THA can be explained by strain-adaptative remodelling.
J Biomech, 32 (1999), pp. 695-703
[33.]
A.W.L. Turner, R.M. Gillies, R. Sekel, P. Morris, W. Bruce, W.R. Walsh.
Computational bone remodelling simulations and comparisons with DEXA results.
J Orthop Res, 23 (2005), pp. 705-712
[34.]
T. Karachalios, C.H. Tsatsaronis, G. Efraimis, P. Papadelis, G. Lyritis, G. Diakoumopoulos.
The long-term clinical relevance of calcar atrophy caused by stress shielding in total hip arthroplasty.
J Arthroplasty, 19 (2004), pp. 469-475
[35.]
H. Ohta, S. Kobayashi, N. Saito, M. Nawata, H. Horiuchi, K. Takaoka.
Sequential changes in periprosthetic bone mineral density following total hip arthroplasty: a 3-year follow-up.
J Bone Miner Metab, 21 (2003), pp. 229-233
[36.]
T. Nishii, N. Sugano, K. Masuhara, T. Shibuya, T. Ochi, S. Tamura.
Longitudinal evaluation of time related bone remodelling after cementless total hip arthroplasty.
Clin Orthop Relat Res, 339 (1997), pp. 121-131
[37.]
A.I. Rahmy, T. Gosens, G.M. Blake, A. Tonino, I. Fogelman.
Periprosthetic bone remodelling of two types of uncemented femoral implant with proximal hydroxyapatite coating: a 3-year follow up study addressing the influence of prosthetic design and preoperative bone density on periprosthetic bone loss.
Osteoporos Int, 15 (2004), pp. 281-289
[38.]
C.A. Engh, P. Massin, K.E. Suthers.
Roentgenographic assessment of the biologic fixation of porous-surfaced femoral component.
Clin Orthop Relat Res, 257 (1990), pp. 107-128
[39.]
B. Cohen, N. Rushton.
Accuracy of DEXA measurement of bone mineral density after total hip arthroplasty.
J Bone Joint Surg Br, 77B (1995), pp. 479-483
[40.]
E.S. Mortimer, L. Rosenthall, I. Paterson, J.D. Bobyn.
Effect of rotation on periprosthetic bone mineral measurements in a hip phantom.
Clin Orthop Relat Res, 324 (1996), pp. 269-274
[41.]
I-DEAS; 2006. Disponible en: http://www.ugs.com/
[42.]
ABAQUS; 2006. Disponible en: http://www.abaqus.com/
[43.]
S. Arranz Merino, A. Ros Felip, E. Rincón Rincón, R. Claramunt Alonso.
Caracterización mecánica del material óseo.
Tecnologí y Desarrollo, 2 (2004), pp. 3-27
[44.]
Evans FG. Mechanical properties of bone. En: Evans FG, editor. Illinois: Ed. Springfield; 1973.
[45.]
MatWeb (Material Property Data); 2006. Disponible en: http://www.matweb.com/
[46.]
P. Gutiérrez, P. Doménech, J. Roca.
Biomecánica de la cadera.
Patología de la cadera en el adulto, SECOT, (2004),
[47.]
J.Y. Rho, M.C. Hobatho, R.B. Ashman.
Relations of mechanical properties to density and CT numbers in human bone.
Med Eng Phys, 17 (1995), pp. 347-355
[48.]
W. Brodner, P. Bitzan, F. Lomoschitz, P. Krepler, R. Jankovsky, S. Lehr, et al.
Changes in bone mineral density in the proximal femur after cementless total hip arthroplasty. A five-year longitudinal study.
J Bone Joint Surg Br, 86B (2004), pp. 20-26
[49.]
A.W. El Maraghy, E.H. Schemitsch, J.P. Waddell.
Greater trochanter blood flow during total hip arthroplasty using a posterior approach.
Clin Orthop Relat Res, 363 (1999), pp. 151-157
[50.]
T.M. Hupel, E.H. Schemitsch, S.A. Aksenov, J.P. Waddell.
Blood flow changes to the proximal femur during total hip arthroplasty.
Can J Surg, 43 (2000), pp. 359-364
[51.]
P. Korovessis, G. Piperos, A. Michael, A. Baikousis, M. Stamatakis.
Changes in bone mineral density around a stable uncemented total hip arthroplasty.
Int Orthop, 21 (1997), pp. 30-34
[52.]
H. Kröger, P. Venesmaa, J. Jurvelin, H. Miettinen, O. Suomalainen, E. Alhava.
Bone density at the proximal femur after total hip arthroplasty.
Clin Orthop, 352 (1998), pp. 66-74
[53.]
F. Martini, C. Lebherz, F. Mayer, U. Leichtle, E. Kremling, S. Sell.
Precision of the measurements of periprosthetic bone mineral density around hips with a custom-made femoral stem.
J Bone Joint Surg Br, 82B (2000), pp. 1065-1071
[54.]
C.J. Sychterz, A.M. Claus, C.A. Engh.
What we have learned about long-term cementless fixation from autopsy retrieval.
Clin Orthop Real Res, 405 (2002), pp. 79-91
[55.]
J. Kärrholm, C.H. Anderberg, F. Snorrason, J. Thanner, N. Langeland, H. Malchau, et al.
Evaluation of a femoral stem with reduced stiffness.
J Bone Joint Surg Am, 84A (2002), pp. 1651-1658
[56.]
T. Niinimäki, J. Junila, P. Jalovaara.
A proximal fixed anatomic femoral stem reduces stress shielding.
Int Orthop, 25 (2001), pp. 85-88
[57.]
B. Zerahn, M. Storgaard, T. Johansen, C. Olsen, G. Lausten, I.L. Kanstrup.
Changes in bone mineral density adjacent to two biomechanically different types of cementless femoral stems in total hip arthroplasty.
Int Orthop, 22 (1998), pp. 225-229
[58.]
O.N. Nagi, S. Kumar, S. Aggarwal.
The uncemented isoelastic/isotitan total hip arthroplasty. A 10-15 years follow-up with bone mineral density evaluation.
Acta Orthop Belg, 72 (2006), pp. 55-64
[59.]
A. Tonino, A. Rahmy.
The hydroxyapatite ABG hip system.
J Arthroplasty, 15 (2000), pp. 274-282
[60.]
H. Ahlborg, O. Johnell, M. Karlsson.
An age-related medullary expansion can have implications for the long-term fixation of hip prostheses.
Acta Orthop Scand, 75 (2004), pp. 154-159
[61.]
J.L. Carrasco, M. Díaz, J. Honorato, R. Pérez, A. Rapado, I. Ruiz.
Densidad mineral ósea en cuello femoral.
Proyecto Multicéntrico de Investigación en Osteoporosis. Estudio de la densidad ósea de la Población Española, Pharma Consult editors, (1992),

SEC0T Foundation Basic research award 2007.

Copyright © 2008. Sociedad Española de Cirugía Ortopédica y Traumatología (SECOT). All rights reserved
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos