metricas
covid
Buscar en
Revista Española de Geriatría y Gerontología
Toda la web
Inicio Revista Española de Geriatría y Gerontología Importancia de los aplicadores de campo magnético en los tratamientos electrote...
Journal Information
Vol. 38. Issue 6.
Pages 355-368 (January 2003)
Share
Share
Download PDF
More article options
Vol. 38. Issue 6.
Pages 355-368 (January 2003)
Full text access
Importancia de los aplicadores de campo magnético en los tratamientos electroterapéuticos en las personas mayores
Importance of the magnetic field devices in electromagnetic therapy in the elderly
Visits
6850
A. Madroñero de la Cal
Corresponding author
inmac09@cenim.csic.es

Correspondencia: Consejo Superior de Investigaciones Científicas. CENIM (Centro Nacional de Investigaciones Metalúrgicas). Avda. Gregorio del Amo, 8. 28040 Madrid. España.
Consejo Superior de Investigaciones Científicas. CENIM (Centro Nacional de Investigaciones Metalúrgicas). Madrid. España
This item has received
Article information
Resumen

A medida que ha ido progresando el conocimiento sobre los mecanismos de interacción entre los campos magnéticos exógenos y el cuerpo humano se han ido incrementando sus aplicaciones terapéuticas, al mismo tiempo que se iban produciendo más eficientes y más especializados equipos y sistemas para aplicarlos.

Los grandes avances que se consiguieron en traumatología y en rehabilitación dan paso a su empleo en el tratamiento de enfermedades degenerativas. Esta nueva indicación ha precisado modificaciones sustanciales en el diseño de los aplicadores con los que se genera el campo magnético en el que se sumerge al paciente durante cada sesión terapéutica.

En el presente trabajo se revisan los conocimientos sobre la interacción campos magnéticos-organismos y los parámetros que regulan la interacción y sus efectos.

Se describen los dos rangos de intensidad de los campos terapéuticos: a) campos del orden de militeslas (10–3 T), que tienen efectos sobre ciertos procesos metabólicos, regidos por las leyes de la fisicoquímica clásica, y b) campos extremadamente tenues, del orden de picoteslas (10–12 T), que actúan sobre ciertos procesos neuronales y que se rigen por las leyes de la física cuántica. Los primeros se utilizan en la corrección de fallos en la reparación ósea, mientras que los segundos están mostrando su eficiencia en el tratamiento de algunas enfermedades degenerativas, como la esclerosis múltiple o las enfermedades de Parkinson y de Alzheimer. Dado lo tenue de los campos con los que hay que actuar sobre el cerebro, resulta muy prometedora la posibilidad de aplicarlos en la modalidad de campos cruzados, por ser éste el modo de conseguir la máxima eficiencia.

Palabras clave:
Magnetoterapia
Interacción campos magnéticos-organismos
Reparación ósea
Enfermedades degenerativas en ancianos
Campos cruzados
Abstract

As knowledge of the mechanisms of interaction between exogenous magnetic fields and the human body has grown, the therapeutic applications of these fields have increased. At the same time, these therapeutic options have become more efficient and specialised apparatus and systems have been developed for their application.

The advances achieved in traumatology and rehabilitation have resulted in the use of magnetic fields in degenerative diseases. This new indication has required considerable modifications to the design of the devices used to generate the magnetic field in which the patient is submerged in each therapeutic session.

The present study reviews knowledge of the interaction between magnetic fields and organisms and the parameters that regulate this interaction and its effects.

The two ranges of intensity of therapeutic fields are described: a) fields in the order of milliteslas (10–3 T), which have effects on certain metabolic processes and are governed by the laws of classical physics and chemistry, and b) extremely tenuous fields, of the order of picoteslas (10–12 T), which act on certain neuronal processes and which are governed by the laws of quantum physics. The former have been used in the treatment of delayed bone healing while the latter are demonstrating their effectiveness in the treatment of some degenerative diseases such as multiple sclerosis, Parkinson’s disease, and Alzheimer’s disease. Given the tenuousness of the fields applied to the brain, the possibility of applying them in a crossed field modality is highly promising since this mode achieves maximum efficiency.

Key words:
Electromagnetic therapy
Interaction magnetic fields-organisms
Bone healing
Degenerative diseases in the elderly
Crossed fields
Full text is only aviable in PDF
Biblografía
[1.]
M. McLean, S. Engström, R.H. Holcomb.
Static magnetic fields for the treatment of pain.
Epilepsy Behaviour, 2 (2001), pp. S74-S80
[2.]
V.M. Borets, Y.u. Ostrovskii, Bankovskii, A, T.F. Dudinskaya.
Brain monoamine oxidase activity under the effect of various magnetic fields.
Zdravookhranenie Belorussii, 3 (1986), pp. 43-45
[3.]
V.S. Martynyuk, S.B. Martynyuk.
Influence of ecologically significant variable magnetic field on metabolic parameters in brain of animals.
Biofizika, 46 (2001), pp. 910-914
[4.]
P. Semm.
Neurobiological investigations on the magnetic sensitivity of the pineal gland in rodents and pigeons. Comparative Biochemistry and Physiology, Part A.
Molecular & Integrative Physiology, 76 (1983), pp. 683-689
[5.]
P.V.S. Narayan, S. Subrahmanyam, M. Satyanarayana, K. Rajeswari, T.M. Srinivasan.
Effects of pulsating magnetic fields on the physiology of test animals and man.
Curr Sci, 53 (1984), pp. 59-65
[6.]
E.A. Nosova, L.M. Kurkina.
Effect of a constant magnetic field on some aspects of energy and nitrogen metabolism in the cerebral hemispheres of rats.
Kosmicheskaya Biologiya i Aviakosmicheskaya Meditsina, 13 (1979), pp. 72-74
[7.]
H. Kabuto, I. Yokoi, Y. Namba, N. Ogawa, A.L. Mori, P. Robert.
Magnetic fields and physical restraint alter the levels of monoamines and their metabolites in the rat brain.
J Brain Sci, 25 (1999), pp. 45-54
[8.]
Pollack SR, Brigthon CT, Pienkowski D, Griffith NJ. Electromagnetic method and apparatus for healing living tissue. Patente US005014699
[9.]
Ostrow A, Tannenbaum J. PEMF biophysical stimulation field generator device and method. Patente WO0078267A2
[10.]
Drolet RA, Gaétan C. Electro-magnetic therapeutic system and method. Patente EP 0048451A1
[11.]
Jacobson JI. Method for ameliorating the aging process and the effects thereof utilizing electromagnetic energy. Patente US006004257A
[12.]
Jacobson JI. Magnetic field generating device and method of generating and applying a magnetic field for treatment of specified conditions. Patente US006099459A
[13.]
Liboff AR, McLeod BR, Smith SD. Techniques for controlling osteoporosis using non-invasive magnetic fields. Patente US005267939A. Puede verse también en: Method and apparatus for controlling tissue growth with an applied fluctuating magnetic field. Patente US005123898A
[14.]
Madroñero A. Device of múltiple magnetic fields for their use in magnetotherapy and magneto acupuncture. European Patent Application No 03380110.1
[15.]
Edwards JD. Orthotic devices incorporating pulsed electromagnetic field therapy. Patente WO 95/27533
[16.]
Giangregorio S. Device for stimulating the natural defenses of a person or of any cellular system. Patente WO 95/07729
[17.]
Ostrow AS. Magnetotherapy apparatus. Patente WO09413357
[18.]
J. Marx.
NFG and Alzheimer’s: hopes and fears.
Science, 247 (1990), pp. 408-410
[19.]
Kessler JA, Apfel SC. Use of NGF growth factors to treat drug-induced neuropathy. Patente US005604202A
[20.]
C.F. Blackman, J.P. Blanchard, S.G. Benane, D.E. House, J.A. Elder.
Double blind test of magnetic field effects on neurite outgrowth.
Bielectromagnetics, 19 (1998), pp. 204-209
[21.]
M.Y. Macias, J.H. Battocletti, C.H. Sutton, F.A. Pintar, D.J. Maiman.
Directed and enhanced neurite growth with pulsed magnetic field stimulation.
Bielectromagnetics, 21 (2000), pp. 272-286
[22.]
Sandyk R. Treatment of neurological and mental disorders. Patente US005470846A
[23.]
Sandyck R. Compositions and methods which retard the ageing process and which improve age-related disease conditions. Patente WO97/46244
[24.]
Sandyck R. Compositions and methods useful for the treatment of neurological and mental disorders. Patente WO 99/13884
[25.]
Sandyck R. Methods useful for the treatment of neurological and mental disorders related to deficient serotonin neurotransmission and impaired pineal melatonin function. Patente US005885976A
[26.]
Fischell DR, Upton ARM. Low frequency magnetic neuroestimulator for the treatment of neurological disorders. Patente US 2003/0028072A1
[27.]
Comrie McD, Erlanger DM, Kaplan DF, Theodorocopoulos A, Yee P, Shchogolev V. Neurological pathology diagnostic apparatus and methods. Patente EP 1 122 679 A2 (2001)
[28.]
E. Gómez Tortosa, I. Gonzalo, S. Fanjul, S. Cantarero, N. Cuadrado, J. García Yébenes, et al.
Niveles de proteína tau y betaamiloide en la demencia con cuerpos de Lewy en comparación con la enfermedad de Alzheimer.
Mapfre Medicina, 14 (2003), pp. 118-124
[29.]
R. Sandyk, P.A. Anninos, N. Tsagas.
Magnetic fields and seasonality of affective illness: implications for therapy.
Int J Neuroscience, 58 (1991), pp. 261-267
[30.]
R. Sandyk.
Suicidal behaviour is attenuated in patients with multiple sclerosis treatment with electromagnetic fields.
Int J Neuroscience, 87 (1996), pp. 5-15
[31.]
R. Sandyk, P.A. Anninos, N. Tsagas.
Age related disruption of circadian rhythms: possible relationship to memory impairment and implications for therapy with magnetic fields.
Int J Neurosci, 59 (1991), pp. 259-262
[32.]
R. Sandyk.
Magnetic fields in the therapy of parkinsonism.
Int J Neuroesci, 66 (1992), pp. 209-235
[33.]
R. Sandyk.
Treatment of Parkinson disease with magnetic field reduces the requirement for antiparkinsonian medications.
Int J Neurosci, 74 (1995), pp. 191-201
[34.]
C.J. Earley.
Restless legs syndrome.
N Engl J Med, 348 (2003), pp. 2103-2109
[35.]
R.P. Allen, C.J. Earley.
restless leg syndrome: a review of clinical and pathophysiological features.
J Clin Neurophysiol, 18 (2001), pp. 128-147
[36.]
M. Polydefkis, R.P. Allen, P. Hauer, C.J. Early, J.V. Griffin, J.C. McArthur.
Subclinical sensory neuropathy in late-onset restless legs syndrome.
Neurology, 55 (2000), pp. 1115-1121
[37.]
McBrininn S, Anderson RV. Treatment for restless legs. Patente US2002107257
[38.]
Oertel W, Meier D, Gómez-Mancilla B, Montplaisir J. Use of pramipexole in the treatment of restless legs syndrome. Patente WO 9831362
[39.]
Schueler P. Use of cabergoline in the treatment of restless legs syndrome. Patente WO 9948484
[40.]
Horowski R, Tack J, Engfer A. Transdermal therapeutic system for treating restless legs syndrome. Patente WO 0215889
[41.]
Abuzzahab FS. Anticonvulsant derivatives useful for the treatment of restless limb syndrome and periodic limb movement disorder. Patente WO03026676
[42.]
Saltarelli MD. Nicotinic acetylcholine receptor antagonist in the treatment of restless legs syndrome. Patente US20030134844A1
[43.]
Kumagai H, Utsumi J. Remedies for psychoneurosis. Patente WO02078744
[44.]
R. Sandyk, R.P. Iacono.
Reversal of visual neglect in Parkinson’s disease by treatment with picotesla range magnetic fields.
Int J Neuroesci, 73 (1993), pp. 93-107
[45.]
R. Sandyk.
Weak electromagnetic fields reverse visuospatial hemi-inattention in Parkinson’s disease.
Int J Neuroscience, 81 (1995), pp. 47-65
[46.]
R. Sandyk.
Progresive cognitive improvement in multiple sclerosis from treatment with electromagnetic fields.
Int J Neurosci, 89 (1997), pp. 39-51
[47.]
R. Sandyk.
Therapeutic effects of alternating current pulsed electromagnetic fields in multiple sclerosis.
J Alter Compl Medicine, 3 (1997), pp. 365-386
[48.]
R. Sandyk.
Rapid normalization of visual evoked potentials pico tesla range magnetic fields in chronic progressive multiple sclerosis.
Int J Neurosci, 77 (1994), pp. 243-259
[49.]
V. Rahoff.
Harnessing electric and magnetic fields for healing and health.
Science News, 156 (1999), pp. 316-326
[51.]
Rubik B, Beker RO, Flower RG, Hazlewod CF, Liboff AR, Walleczek J. Bioelectromagnetics applications in medicine. Nitt. En: http://niehs.nih.gov/emfrapid/html/Symposium3/TissueHeal.html
[52.]
P. Guillén García, A. Madroñero de la Cal.
Enhancement of bone healing by an exogenous magnetic field and the magnetic vaccine.
J Biomed Eng, 7 (1985), pp. 157-160
[53.]
J. Pastor-Gómez.
Mecánica cuántica y cerebro: una revisión crítica.
Rev Neurol, 35 (2002), pp. 87-94
[54.]
D. Zohar.
La conciencia cuántica.
[55.]
F.D. Lente.
Cases of ununited fractures treated by electricity.
NY J Med, 5 (1850), pp. 317-319
[56.]
E. Hawtorne.
On the causes and treatment of pseudoarthrosis and specially that form of it sometimes called supernumerary joints.
Am J Med, 1 (1841), pp. 121-156
[57.]
E. Fukada, I. Yasuda.
On the piezo-electric effect in bone.
J Phys Soc Japan, 12 (1957), pp. 11-58
[58.]
C.A.L. Bassett, R.O. Becker.
Generation of electric potentials by bone in response to mechanical stress.
Science, 137 (1962), pp. 1063-1064
[59.]
Bassett CAL.
Electrical effects in bone.
Sci Am, 213 (1965), pp. 18-28
[60.]
C.A.L. Bassett, R.J. Pawluk, R.O. Becker.
Effects of electric currents on bone formation in vivo.
Nature, 204 (1964), pp. 652-653
[61.]
C.A.L. Bassett, R.J. Pawluk, AA. Pillar.
Science, 184 (1974), pp. 575-577
[62.]
C.A.L. Bassett, R.J. Pawluk, A.A. Pillar.
Acceleration of fracture repair by electromagnetic field. A surgical non invasive method.
Ann NY Acad Sci, 236 (1974), pp. 242-262
[63.]
C.A.L. Bassett, S.N. Mitchell, S.R. Gaston.
Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J.
Bone Joint Surg, 63 (1981), pp. 511-523
[64.]
C.A.L. Bassett, R.J. Pawluk.
Non invasive methods for stimulating osteogenesis.
J Biomed Mater Res, 9 (1975), pp. 371-374
[65.]
W.J.W. Sharrard, M.L. Sutcliffe, M.J. Robson, A.G. Maceachern.
The treatment of fibrous nonunions of fractures by pulsing electromagnetic stimulations.
Bone Joint Surg, 64 (1982), pp. 189-198
[66.]
C.T. Rubin, K.J. McLeod, L.E. Lanyon.
Prevention of osteoporosis by pulsed electromagnetic fields.
Bone Joint Surg, 71 (1989), pp. 411-417
[67.]
K.J. McLeod, C.T. Rubin.
Frequency specific modulation of bone adaptation by induced electric fields.
J Theor Biol, 145 (1990), pp. 385-396
[68.]
K.J. McLeod, C.T. Rubin.
The effect of low-frequency electrical fields on osteogenesis.
Bone Joint Surg, 74 (1992), pp. 920-929
[69.]
J. Watson, E.M. Downes.
The application of pulsed fields to the stimulation of bone healing in humans.
Jap J Apply Phys, 17 (1978), pp. 215-218
[70.]
W.G. De Haas, M.A. Lazarovici, D.M. Morrison.
The effect of low frequency magnetic fields on the healing of the osteotomized rabbit radius.
Clin Orthop, 145 (1979), pp. 245-251
[71.]
J.D. Heckman, A.J. Ingram, R.D. Lloyd, J.V. Luck, P.W. Mayer.
Nonunion treatment with pulsed electromagnetic fields.
Clin Orthop, 161 (1981), pp. 58-66
[72.]
F Lynch A, P. MacAuley.
Treatment of bone nonunion by electromagnetic therapy.
IJMS, 154 (1985), pp. 153-155
[73.]
A.R. Libboff.
Electric field ion cyclotron resonance.
Bioelectromagnetics, 18 (1997), pp. 85-87
[74.]
A.R. Liboff, B.R. McLeod.
Kinetic of channelized membrane ions in magnetic fields.
Bioelectromagnetics, 19 (1997), pp. 39-51
[75.]
U.E. Steiner, T. Ulrich.
Magnetic effects in chemical kinetics and related phenomena.
Chem Rev, 89 (1989), pp. 51-147
[76.]
M. Meskens, J. Stuyck, J.C. Muller.
Treatment of delayed union and non union of the tibia by pulsed electromagnetic fields. A retrospective follow up.
Bull Hosp Jt Dis, 48 (1988), pp. 170-175
[77.]
M. Hinsenkamp, J. Ryaby, F. Burny.
Treatment of nonunion by pulsing electromagnetic field: european multicenter study of 308 cases.
Reconstr Surg Traumatol, 19 (1985), pp. 147-153
[78.]
G De Haas W, A. Beaupre, H. Cameron, E. English.
The Canadian experience with pulsed electromagnetic fields in the treatment of ununited tibial fractures.
Clin Orthop, 208 (1986), pp. 50-55
[79.]
L.S. Fredman.
Pulsating electromagnetic fields in the treatment of delayed and nonunion of fractures: results from a district general hospital.
Injury, 16 (1985), pp. 315-323
[80.]
G.A. Stein, S.H. Anzel.
A review of delayed union of open tibia fractures treated with external fixation and pulsing electromagnetic fields.
Orthopaedics, 7 (1984), pp. 428-436
[81.]
J.F. Krempen, R.A. Silver.
External electromagnetic fields in the treatment of non-union bones. A three year experience in private practice.
Orthop Rev, 10 (1981), pp. 33-39
[82.]
U.G. Randoll.
Elektromagnetische Felder bei der Behandlung der Osteoporose.
Therapeuticon, 6 (1992), pp. 144-150
[83.]
M. Nagai, M. Ota.
Pulsating electromagnetic field estimulates mRNA expression of bone morphogenetic protein-2 and -4.
J Dent Res, 73 (1994), pp. 1601-1605
[84.]
T. Bodamyali, B. Bhatt, F.J. Hughes, V.R. Winrow, J.M. Kanczler, B. Simon, et al.
Pulsed electromagnetic fields induce osteogenesis and unregulate bone morphogenetic protein-2 and–4 mRNA in rat osteoblast in vivo.
Trans Orthop Res Soc, 21 (1996), pp. 204-209
[85.]
H. Zhuang, W. Wang, R.M. Seldes, A.D. Tahernia, H. Fan, C.T. Brighton.
Electrical stimulation induces the level of FGF-B1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway.
Biochem Byophys Res Comm, 237 (1997), pp. 225-229
[86.]
R.K. Aaron, D. Ciombor, A.R. Jones.
Bone induction by decalcified bone matrix and mRNA of TGFb and IGF-1 are increased by ELF field stimulation.
Trans Orthop Res Soc, 22 (1997), pp. 548-554
[87.]
C.F. Blackman, S.G. Benane, J.R. Rabinowitz, D.E. House, W.T. Joines.
A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro.
Bioelectromagnetics, 6 (1985), pp. 327-337
[88.]
C.A.L. Bassett.
Fundamental and practical aspects of therapeutic uses of pulsed electromagnetic fields.
Crit Rev Biomed Eng, 17 (1989), pp. 451-529
[89.]
C.A. Bassett, S.N. Mitchell, S.R. Gaston.
Pulsing electromagnetic field treatment in ununited fractures and failed arthrodeses.
JAMA, 247 (1982), pp. 623-628
[90.]
C.A. Bassett.
Beneficial effects of electromagnetic fields.
J Cell Bioch, 51 (1993), pp. 387-393
[91.]
V. Ulashchik.
Theoretical and practical aspects of general magnethoterapy.
Voprosy Kurortologii, Fizioterapii I Lechebnoi Fizicheskoi Kultury, 5 (2001), pp. 3-8
[92.]
V.I. Kovalchuck, et al.
Use of extremely low frequency magnetic fields in clinical practice.
Fizicheskaia Meditzina, 4 (1994), pp. 87-92
[93.]
A. Zaslavsky, G.S. Markarov.
A low frequency impulse apparatus for physical therapy «Infita».
Med Tehk, 5 (1994), pp. 39-41
[94.]
J. Jerabek.
Pulsed magnetotherapy in Czechoslovakia. A review.
Rev Environ Health, 10 (1994), pp. 127-134
Copyright © 2003. Sociedad Española de Geriatría y Gerontología
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos