

Revista Española de Medicina Nuclear e Imagen Molecular

117 - RADIOMARCAJE Y BIODISTRIBUCIÓN MEDIANTE SPECT/CT EN UN MODELO DE RATA DE NANOSISTEMAS LIPÍDICOS PARA DESARROLLO DE APÓSITOS CON ANTIBIÓTICOS/FACTORES DE CRECIMIENTO PARA EL TRATAMIENTO DE HERIDAS ABIERTAS

M. Collantes¹, R. Ramos-Membrive², A. Aldave³, G. Quincoces⁴, M. Ecay³, M. Pastor⁵, G. Gainza⁵, E. Gainza⁵ e I. Peñuelas⁴

¹Servicio de Medicina Nuclear; ⁴Servicio de Medicina Nuclear y Unidad de Radiofarmacia. Clínica Universidad de Navarra. Instituto de Investigación Sanitaria de Navarra (IdisNA). Pamplona. ²Servicio de Medicina Nuclear y Unidad de Radiofarmacia. Clínica Universidad de Navarra. Pamplona. ³Unidad de Investigación micro-PET. Fundación para la Investigación Médica Aplicada. Pamplona. ⁵Biopraxis Research AIE. Vitoria.

Resumen

Objetivo: Las nanopartículas lipídicas (NPL) para vehiculización de antibióticos/factores de crecimiento conllevan mejoras para el tratamiento de heridas complejas, permitiendo liberación controlada e incrementando seguridad y eficacia. Se realizaron estudios de biodistribución de NPL radiomarcadas (99m Tc-NPL) en un modelo de herida abierta en rata, cuantificando acumulación en órganos y tiempo de permanencia en herida.

Material y métodos: Las NPL basadas en Precirol-ATO5 y Miglyol-182 como núcleo lipídico se radiomarcaron con $^{99\text{m}}$ Tc-pertecnetato reducido con SnCl_2 . Bajo anestesia se realizó una herida quirúrgica en rata (n = 17) hasta el panículo carnoso de la espalda. Tras 24h se administraron las $^{99\text{m}}$ Tc-NPL (5 mg/3 MBq, n = 9) o $^{99\text{m}}$ Tc-libre (6 MBq; n = 8) como control, cubriendo la herida con un apósito. La biodistribución se cuantificó mediante SPECT/CT tras 1, 2, 4, 8, 12, y 24h. Tras sacrificio a punto final, los órganos/tejidos se midieron en contador gamma calculando %ID/órgano.

Resultado: NPL: 144 ± 6.3 nm, potencial Z = -20 mV, índice polidispersión = 0.22 ± 0.01 . El rendimiento de marcaje fue > 95% (radio-TLC). Las imágenes mostraron que > 98% de radiactividad de $^{99\text{m}}$ Tc-NPL permanecía en la zona de la herida hasta 24h. El $^{99\text{m}}$ Tc-libre fue absorbido en los controles, con retención en la herida < 7% a 24h y aparición gradual en estómago e intestino. Los datos tras disección confirmaron este patrón, permitiendo analizar por separado las diferentes partes de la herida. En el grupo $^{99\text{m}}$ Tc-NPL, el apósito retuvo 41%ID, mientras que el 57% se encontró en la piel, 1% en tejido subcutáneo y 0.02% en el panículo carnoso. En los controles $^{99\text{m}}$ Tc-libre estos %ID fueron 6%, 13%, 0.2% y 0.01% respectivamente.

Conclusiones: Se logró el radiomarcaje de NPL de manera sencilla, eficaz y estable. Los datos de biodistribución mediante SPECT/CT y disección confirman una excelente retención de las NPL en el lugar de la herida aportando evidencia sobre la seguridad de la administración tópica de estos nanosistemas.