Corresponding author at: Avenida Universidad Anáhuac #46, Colonia Lomas Anáhuac, Delegación Huixquilucan, C.P. 52786 Mexico State, Mexico.
was read the article
array:24 [ "pii" => "S0185106316301123" "issn" => "01851063" "doi" => "10.1016/j.hgmx.2016.09.010" "estado" => "S300" "fechaPublicacion" => "2018-07-01" "aid" => "138" "copyright" => "Sociedad Médica del Hospital General de México" "copyrightAnyo" => "2016" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "ssu" "cita" => "Rev Med Hosp Gen Mex. 2018;81:154-64" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 1270 "formatos" => array:3 [ "EPUB" => 63 "HTML" => 857 "PDF" => 350 ] ] "itemSiguiente" => array:19 [ "pii" => "S0185106317300331" "issn" => "01851063" "doi" => "10.1016/j.hgmx.2017.05.004" "estado" => "S300" "fechaPublicacion" => "2018-07-01" "aid" => "171" "copyright" => "Sociedad Médica del Hospital General de México" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "ssu" "cita" => "Rev Med Hosp Gen Mex. 2018;81:165-76" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 963 "formatos" => array:3 [ "EPUB" => 66 "HTML" => 725 "PDF" => 172 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Medical Education</span>" "titulo" => "The costs of patenting in Mexico" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "165" "paginaFinal" => "176" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Los costos de patentar en México" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1575 "Ancho" => 2255 "Tamanyo" => 310124 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Diagram of times and costs in the international phase of a PCT patent.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "L.R. Vega-González, I.J. Hernández-Jardines" "autores" => array:2 [ 0 => array:2 [ "nombre" => "L.R." "apellidos" => "Vega-González" ] 1 => array:2 [ "nombre" => "I.J." "apellidos" => "Hernández-Jardines" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0185106317300331?idApp=UINPBA00004N" "url" => "/01851063/0000008100000003/v1_201807150508/S0185106317300331/v1_201807150508/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S0185106316301135" "issn" => "01851063" "doi" => "10.1016/j.hgmx.2016.09.011" "estado" => "S300" "fechaPublicacion" => "2018-07-01" "aid" => "139" "copyright" => "Sociedad Médica del Hospital General de México" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "ssu" "cita" => "Rev Med Hosp Gen Mex. 2018;81:146-53" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 11237 "formatos" => array:3 [ "EPUB" => 77 "HTML" => 9815 "PDF" => 1345 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Review article</span>" "titulo" => "Clinical and differential diagnosis: Dengue, chikungunya and Zika" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "146" "paginaFinal" => "153" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Diagnóstico clínico y diferencial: dengue, chikunguña y zika" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2276 "Ancho" => 3420 "Tamanyo" => 427971 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Flow chart for the differential laboratory diagnosis of dengue, chikungunya and Zika.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "S.L. Beltrán-Silva, S.S. Chacón-Hernández, E. Moreno-Palacios, J.Á. Pereyra-Molina" "autores" => array:4 [ 0 => array:2 [ "nombre" => "S.L." "apellidos" => "Beltrán-Silva" ] 1 => array:2 [ "nombre" => "S.S." "apellidos" => "Chacón-Hernández" ] 2 => array:2 [ "nombre" => "E." "apellidos" => "Moreno-Palacios" ] 3 => array:2 [ "nombre" => "J.Á." "apellidos" => "Pereyra-Molina" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0185106316301135?idApp=UINPBA00004N" "url" => "/01851063/0000008100000003/v1_201807150508/S0185106316301135/v1_201807150508/en/main.assets" ] "en" => array:18 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Review article</span>" "titulo" => "Chagas disease: Current perspectives on a forgotten disease" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "154" "paginaFinal" => "164" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "D.-A. Álvarez-Hernández, G.-A. Franyuti-Kelly, R. Díaz-López-Silva, A.-M. González-Chávez, D. González-Hermosillo-Cornejo, R. Vázquez-López" "autores" => array:6 [ 0 => array:4 [ "nombre" => "D.-A." "apellidos" => "Álvarez-Hernández" "email" => array:1 [ 0 => "diego.alvarez.hernandez@hotmail.com" ] "referencia" => array:3 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 1 => array:3 [ "nombre" => "G.-A." "apellidos" => "Franyuti-Kelly" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 2 => array:3 [ "nombre" => "R." "apellidos" => "Díaz-López-Silva" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 3 => array:3 [ "nombre" => "A.-M." "apellidos" => "González-Chávez" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0020" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">e</span>" "identificador" => "aff0025" ] ] ] 4 => array:3 [ "nombre" => "D." "apellidos" => "González-Hermosillo-Cornejo" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0020" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">f</span>" "identificador" => "aff0030" ] ] ] 5 => array:3 [ "nombre" => "R." "apellidos" => "Vázquez-López" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">g</span>" "identificador" => "aff0035" ] ] ] ] "afiliaciones" => array:7 [ 0 => array:3 [ "entidad" => "Faculty of Health Sciences, Universidad Anáhuac México Norte, Mexico State, Mexico" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Medical Services Coordination, Mexican Red Cross PAR, Huixquilucan Office, Mexico State, Mexico" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Faculty of Medicine and Psychology, Universidad Autónoma de Baja California – Tijuana campus, Baja California, Mexico" "etiqueta" => "c" "identificador" => "aff0015" ] 3 => array:3 [ "entidad" => "Faculty of Health Sciences, Universidad Panamericana, Mexico City, Mexico" "etiqueta" => "d" "identificador" => "aff0020" ] 4 => array:3 [ "entidad" => "Department of General Surgery, Hospital Español de México, Mexico City, Mexico" "etiqueta" => "e" "identificador" => "aff0025" ] 5 => array:3 [ "entidad" => "Department of General Surgery, Fundación Clínica Médica Sur, Mexico City, Mexico" "etiqueta" => "f" "identificador" => "aff0030" ] 6 => array:3 [ "entidad" => "Department of Microbiology and Parasitology, Faculty of Health Sciences, Universidad Anáhuac México Norte, Mexico State, Mexico" "etiqueta" => "g" "identificador" => "aff0035" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author at: Avenida Universidad Anáhuac #46, Colonia Lomas Anáhuac, Delegación Huixquilucan, C.P. 52786 Mexico State, Mexico." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Enfermedad de Chagas: Perspectivas actuales sobre una enfermedad olvidada" ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">The World Health Organization (WHO) recognises American trypanosomiasis, or Chagas disease, as one of the 17 neglected tropical diseases, which have persisted in the poorest, most marginalised societies.<a class="elsevierStyleCrossRef" href="#bib0235"><span class="elsevierStyleSup">1</span></a> It is estimated that close to 6–8 million people worldwide are infected with <span class="elsevierStyleItalic">Trypanosoma cruzi</span> and that 65–100 million people are at risk of becoming infected.<a class="elsevierStyleCrossRef" href="#bib0240"><span class="elsevierStyleSup">2</span></a> The majority are in Latin America, where the disease represents a major problem with respect to the morbidity and mortality of the general population, and has become a burden that depletes the region's economic resources and affects the social and occupational environment of those suffering from it.<a class="elsevierStyleCrossRef" href="#bib0245"><span class="elsevierStyleSup">3</span></a> International migration has led to the influx of infected subjects from Latin America to the rest of the world, thus rendering the disease a problem for health systems on a global scale.<a class="elsevierStyleCrossRef" href="#bib0250"><span class="elsevierStyleSup">4</span></a></p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Historical background</span><p id="par0010" class="elsevierStylePara elsevierViewall">The first signs of Chagas disease date back almost 9000 years. Evidence of <span class="elsevierStyleItalic">T. cruzi</span> infection has been found in mummies from northern Chile and southern Peru. In the 18th and 19th centuries, explorers and naturalists such as Charles Darwin provided the first reliable descriptions of its existence and behaviour, without making any association between the parasite, vector, and disease. Only in 1909 did Dr Carlos Justiniano Ribeiro das Chagas make this association, thus giving the disease its eponym. Chagas had been sent to work on a campaign to eradicate malaria while new roads were being constructed in Minas Gerais, Brazil. At the same time, he became interested in studying the presence of insects that abounded in dwellings in precarious areas and fed on blood. When he dissected the insect and studied its gastrointestinal tract, he found protozoa which he identified as belonging to the genus <span class="elsevierStyleItalic">Schizotrypanum</span> (now <span class="elsevierStyleItalic">Trypanosoma</span>). He called them <span class="elsevierStyleItalic">T. cruzi</span> in homage to Dr Oswaldo Cruz, an epidemiologist and teacher. Later on, Dr Salvador Mazza managed to bring the disease to the interest of the scientific community, redefined the route of transmission, and described the signs and symptoms of the acute phase. Romaña, Jörg, Diaz, and Laranja described the signs and symptoms of the chronic phase.<a class="elsevierStyleCrossRefs" href="#bib0255"><span class="elsevierStyleSup">5,6</span></a> Between the 1950s and the 1960s, migration from rural to urban areas brought about the “urbanisation of the disease”.<a class="elsevierStyleCrossRef" href="#bib0265"><span class="elsevierStyleSup">7</span></a> The first programme to control and prevent the disease (Chagas Disease Control Programme) was created in 1960, while the amount of scientific research conducted was increased in the 1970s. The first and only antitrypanosomal drugs, nifurtimox and benznidazole, were developed in 1972 and 1980, respectively.<a class="elsevierStyleCrossRefs" href="#bib0260"><span class="elsevierStyleSup">6,8</span></a></p><p id="par0015" class="elsevierStylePara elsevierViewall">The first cases in Mexico were reported in 1940 by Dr Luis Mazotti, who described its presence in two patients in Tejomulco, Oaxaca. In 1950, Perrín published the first case of chronic Chagas heart disease. In 1956, the Mexican National Campaign to Eradicate Malaria (CNEP) was launched. In this campaign, dichlorodiphenyltrichloroethane (DDT) was systematically sprayed on millions of dwellings located in malarious areas of Mexico that also corresponded with areas of endemic Chagas disease. Between 1966 and 1967, Biagi and Tay conducted seroepidemiological surveys in different Mexican states, reported the first cases of Chagas heart disease confirmed by parasitology, and used the indirect immunofluorescence (IIF) technique for the first time to diagnose the disease. Between 1972 and 1974, Zavala-Velásquez used nifurtimox for the first time for therapeutic purposes. In 1996, Guzmán-Bracho described the first case of congenital Chagas disease in Sahuayo, Michoacán, Mexico. In 1983, systematic treatment with nifurtimox and benznidazole was started at the cost of purchasing a small batch for the Clinical Unit of the Instituto de Salubridad y Enfermedades Tropicales (ISET).<a class="elsevierStyleCrossRefs" href="#bib0275"><span class="elsevierStyleSup">9,10</span></a> Finally, in 2009, the Mexican national programme started to offer medicines to treat cases recorded at the state level.<a class="elsevierStyleCrossRef" href="#bib0250"><span class="elsevierStyleSup">4</span></a></p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Epidemiology</span><p id="par0020" class="elsevierStylePara elsevierViewall">According to WHO estimates, in the 1990s it was calculated that there were close to 16–18 million people infected, 100 million people at risk of acquiring the disease, and close to 45,000 deaths that could be attributed to the development of complications. In this context, the Pan American Health Organization (PAHO) promoted different initiatives to implement and develop measures to control the transmission of Chagas disease by vector, by transfusion, and from mother to foetus, depending on the epidemiological characteristics of each region.<a class="elsevierStyleCrossRef" href="#bib0285"><span class="elsevierStyleSup">11</span></a> As a result of these activities, a significant reduction in the incidence of the disease has been observed in recent years. It is estimated that at present there are close to 6–8 million people infected, 65–100 million people at risk of acquiring the disease, and close to 12,000 deaths per year that can be attributed to the development of complications.<a class="elsevierStyleCrossRef" href="#bib0290"><span class="elsevierStyleSup">12</span></a> The majority of these people are in Latin American, where the disease is endemic in 21 countries. However, movements from rural areas to urban areas and international migration have resulted in the influx of infected subjects from Latin America to the rest of the world, thus rendering the disease a problem for health systems on a global scale.<a class="elsevierStyleCrossRef" href="#bib0240"><span class="elsevierStyleSup">2</span></a></p><p id="par0025" class="elsevierStylePara elsevierViewall">According to the Mexican National Center for Diseases Control and Prevention (CENAPRECE), in Mexico, 75 cases of Chagas disease were recorded in 2000 (18 in the acute phase, 50 in the asymptomatic chronic phase and 7 in the symptomatic chronic phase), the incidence of which was 0.07 cases per 100,000 inhabitants and the mortality was 0.02% (21 deaths). By contrast, in 2012, 830 cases were recorded (7 in the acute phase, 823 in the asymptomatic chronic phase and 0 in the symptomatic chronic phase), the incidence of which was 0.70 cases per 100,000 inhabitants and the mortality was 0.03% (30 deaths). Thus, from 2000 to 2012 there was a cumulative total of 5,463 cases and an increase in incidence and mortality.<a class="elsevierStyleCrossRef" href="#bib0295"><span class="elsevierStyleSup">13</span></a> However, two-thirds of Mexico has the conditions required for vector-borne transmission to take place and, according to PAHO estimates, in 2006, there were approximately 1,000,000 people infected and 29,500,000 people at risk of acquiring the disease.<a class="elsevierStyleCrossRefs" href="#bib0300"><span class="elsevierStyleSup">14,15</span></a> Therefore, it may be inferred that the disease is under-diagnosed.</p></span><span id="sec0095" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Etiology</span><p id="par0500" class="elsevierStylePara elsevierViewall"><ul class="elsevierStyleList" id="lis0105"><li class="elsevierStyleListItem" id="lsti0205"><span class="elsevierStyleLabel">a)</span><p id="par0415" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Parasite:</span><span class="elsevierStyleItalic">T. cruzi</span> is an obligate intracellular proto-zoan, flagellate, and digenean. It belongs to the order <span class="elsevierStyleItalic">Kinetoplastida</span>, family <span class="elsevierStyleItalic">Trypanosomatidae</span>, genus <span class="elsevierStyleItalic">Try-panosoma</span>, and subgenus <span class="elsevierStyleItalic">Schizotrypanum.</span><a class="elsevierStyleCrossRef" href="#bib0270"><span class="elsevierStyleSup">8</span></a> Traditionally it has been classified into two main groups: <span class="elsevierStyleItalic">T. cruzi</span> I (linked to the domestic cycle and causing infections and high rates of morbidity and mortality in humans) and <span class="elsevierStyleItalic">T. cruzi</span> II (linked to the wild cycle and causing infections and low rates of morbidity and mortality in humans). The latter is in turn subdivided into 5 sub-groups (IIa-e), which account for differences in terms of genetic variability, regional distribution, and poten-tial for developing heart or gastrointestinal disease. The current consensus recommends that <span class="elsevierStyleItalic">T. cruzi</span> strains be classified into six main groups: <span class="elsevierStyleItalic">T. cruzi I-VI</span>.<a class="elsevierStyleCrossRefs" href="#bib0310"><span class="elsevierStyleSup">16–18</span></a></p></li><li class="elsevierStyleListItem" id="lsti0210"><span class="elsevierStyleLabel">b)</span><p id="par0420" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Vectors:</span> Triatomines are called triatominos in Mexico and are also known as barbeiros in Brazil, chipos in Venezuela, chiribicos in Colombia, and vinchucas in Argentina, Bolivia, and Chile. They belong to the order<span class="elsevierStyleItalic">Hemiptera</span>, family <span class="elsevierStyleItalic">Reduviidae</span>, subfamily <span class="elsevierStyleItalic">Triatominae</span>, and are responsible for spreading <span class="elsevierStyleItalic">T. cruzi</span>. They are characterised by being obligate haematophages and havingnocturnal habits. There are multiple species, and each of them has different biological behaviour. On the basis of their preferred habitat, they are classified into 3 cycles: domestic, peridomestic, and wild.<a class="elsevierStyleCrossRefs" href="#bib0270"><span class="elsevierStyleSup">8,16</span></a><ul class="elsevierStyleList" id="lis0110"><li class="elsevierStyleListItem" id="lsti0215"><span class="elsevierStyleLabel">–</span><p id="par0425" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Domestic cycle:</span> This is related to the structure and material with which rural and/or periurban houses are built (walls made of adobe or wattle and daub, and ceilings made of vegetable matter that forms cracks in walls and holes in ceilings, places where triatomines live and reproduce), in addition to the fact that their close relationship with humans and animals constitutes an abundant, easy-to-access food source. <span class="elsevierStyleItalic">Triatoma infestans</span> is the main vector residing in the countries of the Southern Cone (Argentina, Bolivia, Brazil, Chile, Paraguay, and Uruguay), <span class="elsevierStyleItalic">Rhodnius prolixus</span> and <span class="elsevierStyleItalic">Triatoma dimidiata</span> are the main vectors residing in the Andean countries and Central America, and <span class="elsevierStyleItalic">Triatoma barberi</span> is the main vector residing in Mexico.<a class="elsevierStyleCrossRefs" href="#bib0270"><span class="elsevierStyleSup">8,16</span></a></p></li><li class="elsevierStyleListItem" id="lsti0220"><span class="elsevierStyleLabel">–</span><p id="par0430" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Peridomestic cycle:</span> A connection is formed between the domestic cycle and the wild cycle involving a wide variety of carriers that freely enter and exit homes. <span class="elsevierStyleItalic">T. dimidiata</span> is the main peridomestic vector worldwide.<a class="elsevierStyleCrossRefs" href="#bib0270"><span class="elsevierStyleSup">8,16</span></a></p></li><li class="elsevierStyleListItem" id="lsti0225"><span class="elsevierStyleLabel">–</span><p id="par0435" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Wild cycle:</span> This is related to a wild habitat and may infect many species of mammal. <span class="elsevierStyleItalic">Panstrongylus megistus</span>, <span class="elsevierStyleItalic">Triatoma brasiliensis</span>, and <span class="elsevierStyleItalic">Triatoma pseudomaculata</span> are the main wild vectors in Brazil, <span class="elsevierStyleItalic">Rhodnius pallescens</span> is the main wild vector in Colombia and Panama, and <span class="elsevierStyleItalic">Triatoma pallidipennis</span> is the main wild vector in Mexico.<a class="elsevierStyleCrossRefs" href="#bib0270"><span class="elsevierStyleSup">8,16</span></a></p></li></ul></p><p id="par0505" class="elsevierStylePara elsevierViewall">In Mexico, 34 species of triatomine belonging to 7 different genera have been identified. The genus <span class="elsevierStyleItalic">Triatom</span>a is the most abundant with 27 species.<a class="elsevierStyleCrossRef" href="#bib0280"><span class="elsevierStyleSup">10</span></a></p></li><li class="elsevierStyleListItem" id="lsti0230"><span class="elsevierStyleLabel">c)</span><p id="par0440" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Carriers:</span> Natural carriers consist of squirrels (<span class="elsevierStyleItalic">Sciurus vulgaris</span>), armadillos (<span class="elsevierStyleItalic">Dasypus novemcinctus</span>), coyotes (<span class="elsevierStyleItalic">Canis latrans</span>), raccoons (<span class="elsevierStyleItalic">Procyon lotor</span>), sheep (<span class="elsevierStyleItalic">Ovis aries</span>), lynx (<span class="elsevierStyleItalic">Lynx rufus</span>), mice (<span class="elsevierStyleItalic">Mus musculus</span>), opossums (<span class="elsevierStyleItalic">Didelphis marsupialis</span>), bats (<span class="elsevierStyleItalic">Murem caecum</span>), primates (<span class="elsevierStyleItalic">Aotus sp., Cebuella pygmaea, Cebus albifrons, Leonto-pithecus chrysomelas, Leontopithecus rosalia, Saguinus fuscicollis, Saguinus labiatus, Saguinus midas, Sagui-nus ustus, and Saimiri sciureus), and foxes (Rocyon cinereoargenteus</span>), in addition to certain domestic animals such as guinea pigs (<span class="elsevierStyleItalic">Cavia porcellus</span>), cats (<span class="elsevierStyleItalic">Felis silvestris catus</span>), dogs (<span class="elsevierStyleItalic">Canis familiaris</span>), and rats (<span class="elsevierStyleItalic">Rattus rattus</span>).<a class="elsevierStyleCrossRefs" href="#bib0270"><span class="elsevierStyleSup">8,16,19</span></a></p></li></ul><span class="elsevierStyleVsp" style="height:0.5px"></span></p></span><span id="sec0100" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Life cycle</span><p id="par0445" class="elsevierStylePara elsevierViewall">Its reproductive cycle allows it to exist in 3 different forms, each of which provides the parasite with certain adaptive advantages, any of which is capable of developing into any other. Metacyclic trypomastigotes, the infectious form of <span class="elsevierStyleItalic">T. cruzi</span>, have a fusiform shape and measure 10-20m in length and 1-3 m in width. They are transmitted to humans through triatomine faeces; while triatomines feed on blood, they defecate on the host's skin, and <span class="elsevierStyleItalic">T. cruz</span>i penetrates through the opening made by the bite and enters the bloodstream through excoriations of the skin caused by scratching secondary to the stinging that the bite causes or by rubbing on the mucosae (conjunctival or nasal). Once inside the body, they are phagocytosed by macrophages in the subcutaneous cellular tissue at the infection site. In the cytosol of this tissue they differentiate into amastigotes. Amastigotes have an ovoid shape and measure 1.5-5m in diameter. They are capable of replicating by binary fission and of causing cell lysis to turn back into trypomastigotes in order to free themselves and travel through the blood and lym-phatic circulation to penetrate any cell in the body, resulting in tropism for myocardiocytes, rhabdomyocytes, and leiomyocytes. In this stage, they may be ingested by another vector that was not previously infected. Within triatomines, trypomastigotes advance towards the medial segment of the gastrointestinal tract. There, they differentiate into epimastigotes, which are better adapted to survive the environment, and replicate again through binary fission. The epimastigotes migrate towards the distal segment of the gastrointestinal tract, where they anchor themselves to the colon epithelium through their flagella, turn back into metacyclic trypomastigotes to be excreted with faeces during the next ingestion of blood, and infect another human, thus closing the transmission cycle.<a class="elsevierStyleCrossRefs" href="#bib0235"><span class="elsevierStyleSup">1,8</span></a></p><p id="par0450" class="elsevierStylePara elsevierViewall">The parasite's reproductive cycle appears to be organised in successive phases; however, there is no specific sequential pattern of progression in terms of differentiation from one form to the next.<a class="elsevierStyleCrossRef" href="#bib0320"><span class="elsevierStyleSup">18</span></a><span class="elsevierStyleVsp" style="height:0.5px"></span></p></span><span id="sec0105" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Transmission</span><p id="par0455" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Vector-borne:</span> This is the main route of transmission to humans and other domestic, peridomestic, and wild species (90%).<a class="elsevierStyleCrossRefs" href="#bib0270"><span class="elsevierStyleSup">8,16</span></a></p><p id="par0460" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Non-vector-borne:</span> This includes blood transfusions, organ transplants, the vertical route, the oral route, and accidental transmission due to occupational exposure.<ul class="elsevierStyleList" id="lis0115"><li class="elsevierStyleListItem" id="lsti0235"><span class="elsevierStyleLabel"><span class="elsevierStyleBold">a)</span></span><p id="par0465" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleVsp" style="height:0.5px"></span><span class="elsevierStyleBold">Blood transfusions and organ transplants:</span><ul class="elsevierStyleList" id="lis0120"><li class="elsevierStyleListItem" id="lsti0240"><span class="elsevierStyleLabel">–</span><p id="par0470" class="elsevierStylePara elsevierViewall">Transmission by blood transfusion is the second most common route of transmission. It occurs due to transfusion from donors who are infected, asymptomatic, and unaware of the presence of the disease. It has been virtually brought under control in developed countries; however, it remains a problem in devel-oping countries where the lack of resources and protocols does not allow for the enforcement of com-pulsory screening of 100% of donors at blood banks. The risk of transmission by transfusion of a unit of 500ml of whole blood is 12-20%.<a class="elsevierStyleCrossRefs" href="#bib0310"><span class="elsevierStyleSup">16,20</span></a></p></li><li class="elsevierStyleListItem" id="lsti0245"><span class="elsevierStyleLabel">–</span><p id="par0475" class="elsevierStylePara elsevierViewall">Transmission by transplant of organs from infected donors has been reported in cases of heart, pancreas, kidney, and bone marrow transplant with organs from live donors and cadavers. Cases have been reported in Argentina, Brazil, Chile, Venezuela, and other countries. To date, there are no specific data on the incubation period or risk of transmission due to an infected transplanted organ.<a class="elsevierStyleCrossRef" href="#bib0310"><span class="elsevierStyleSup">16</span></a></p></li></ul></p></li><li class="elsevierStyleListItem" id="lsti0250"><span class="elsevierStyleLabel">b)</span><p id="par0480" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleVsp" style="height:0.5px"></span><span class="elsevierStyleBold">Vertical, transplacental, maternal-foetal or congenital route:</span> This occurs due to the presence of parasitaemia during pregnancy. While transmission may occur during any disease phase, the most common is theacute phase. This route of transmission had previously been largely limited to rural areas; however, increasing numbers of cases are occurring in cities where the disease did not exist before. This is due to migration of infected women of child-bearing age from rural areas to cities. Cases of congenital Chagas disease have been reported in Argentina, Bolivia, Brazil, Chile, Colombia, Guatemala, Honduras, Mexico, Paraguay, Uruguay, and Venezuela. The risk of congenital transmission varies depending on the <span class="elsevierStyleItalic">T. cruzi</span> strain in question, the parasitaemia of the mother and the existence of placental damage. The average risk due to pregnancy is estimated at 5%. To date, there is no conclusive evidence regarding transmission by breast milk.<a class="elsevierStyleCrossRefs" href="#bib0290"><span class="elsevierStyleSup">12,16</span></a></p></li><li class="elsevierStyleListItem" id="lsti0255"><span class="elsevierStyleLabel">c)</span><p id="par0485" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleVsp" style="height:0.5px"></span><span class="elsevierStyleBold">Oral route (OR):</span> This occurs due to the ingestion of faeces from triatomines previously infected with <span class="elsevierStyleItalic">T. cruzi</span>, the contamination from utensils used to prepare foods, and the consumption of the blood or meat of wild animals. It should be suspected if two or more confirmed acute cases occur simultaneously with an epidemiological link between them, domestic or peridomestic triatomines are absent, and the patient presents with severe signs and symptoms. Outbreaks have occurred following ingestion of sugar cane juice and water contaminated with triatomine faeces in Brazil, Colombia, Mexico, and Venezuela. The average risk of oral transmission is below 1%.21</p></li><li class="elsevierStyleListItem" id="lsti0260"><span class="elsevierStyleLabel">d)</span><p id="par0490" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleVsp" style="height:0.5px"></span><span class="elsevierStyleBold">Accidental due to occupational exposure:</span> This occurs due to poor or no implementation of biosafety measures when performing procedures in clinical and experimental laboratories. Conjunctival transmission occurs through aerosols produced after centrifugation of contaminated samples, handling of infected animals, and/or accidental puncture with infected needles. The average risk of transmission due to occupational exposure is below 1%.<a class="elsevierStyleCrossRefs" href="#bib0270"><span class="elsevierStyleSup">8,21</span></a></p></li></ul><span class="elsevierStyleVsp" style="height:0.5px"></span></p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Immunology</span><p id="par0115" class="elsevierStylePara elsevierViewall">In the course of the past few decades, knowledge of the mechanisms of immune response and the pathophysiology of Chagas disease has increased. <span class="elsevierStyleItalic">T. cruzi</span> is known to interact with multiple host cell receptors, including toll-like receptors (TLRs). This leads to the activation of macrophages, neutrophils, and natural killer (NK) cells. These cells result in an intense inflammatory reaction secondary to upregulation of pro-inflammatory cytokines and cause respiratory burst through NAD(P)H oxidase (nicotinamide adenine dinucleotide phosphate oxidase [NOX2]), inducible nitric oxide synthase (iNOS), and myeloperoxidase (MPO). This releases reactive oxygen species (ROS), such as superoxide (O<span class="elsevierStyleSup">2−</span>), and reactive nitrogen species (RNS), such as nitric oxide (NO), in addition to hypochlorous acid (HOCl).<a class="elsevierStyleCrossRefs" href="#bib0340"><span class="elsevierStyleSup">22,23</span></a></p><p id="par0120" class="elsevierStylePara elsevierViewall">Respiratory burst is the main mechanism of response against parasitic infections. ROS play a significant role in innate immune response against infection with <span class="elsevierStyleItalic">T. cruzi</span> as they damage its DNA (they cause oxidative changes in amino acids such as cysteine, phenylalanine, methionine, tyrosine, and tryptophan). RNS limit residual parasitic replication (they act as parasiticides by mobilising zinc from metalloproteins, inhibiting parasitic respiration, and limiting the availability of precursors for DNA synthesis and repair). HOCl is believed to be a mediator of tissue damage. In addition, subsequent reactions may form intermediate products such as H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span>, OH, nitrogen dioxide (NO<span class="elsevierStyleInf">2</span>), peroxynitrite (ONOO−), dinitrogen trioxide (N<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">3</span>), dinitrosyl iron complexes (DNICs), nitrosothiols (RSNOs), and nitroxyl (HNO).<a class="elsevierStyleCrossRef" href="#bib0350"><span class="elsevierStyleSup">24</span></a> However, when ROS are produced in excess for prolonged periods of time, inefficient ROS elimination and reduced antioxidant concentration result in sustained oxidative stress. This causes cytotoxicity and dysfunction in physiological processes. ROS can rapidly oxidise lipids, proteins, and DNA. Lipid peroxidation causes damage to membrane integrity and proteins, while DNA oxidation results in damage to nucleotides, thereby generating mutations and transcription errors that exceed the capacity of cell repair mechanisms and result in structural and functional deterioration.<a class="elsevierStyleCrossRef" href="#bib0355"><span class="elsevierStyleSup">25</span></a></p><p id="par0125" class="elsevierStylePara elsevierViewall">Moreover, CD4<span class="elsevierStyleSup"><span class="elsevierStyleBold">+</span></span> T lymphocytes play a crucial role in the immune response against infection with <span class="elsevierStyleItalic">T. cruzi</span>, since they recruit and activate other cells such as macrophages, mast cells, basophils, eosinophils, neutrophils, B cells, and CD8<span class="elsevierStyleSup"><span class="elsevierStyleBold">+</span></span> T cells. “Naive” CD4<span class="elsevierStyleSup"><span class="elsevierStyleBold">+</span></span> T lymphocytes differentiate up to subdividing into 4 major lineages in relation to the disease phase: T1, T2, T helper 17, and T regulatory (Treg) lymphocytes. These have different functions, cytokine secretion patterns, and transcription factor expression. The T1 lymphocyte subgroup participates in cell-mediated immune reactions that activate macrophages to eliminate intracellular pathogens and is associated with overexpression of IL-2, IL-12, TNF-α, and IFN-δ, as well as disease control, although it may often also be associated with disease pathogenesis due to the exuberant inflammatory reaction that it causes. The T2 lymphocyte subgroup participates in humourally mediated immune responses that activate eosinophils, mast cells, and IgE to eliminate parasites and is associated with overexpression of IL-4, IL-5, IL-6, IL-10, and IL-13, as well as disease persistence and severity. In addition, “naive” CD4<span class="elsevierStyleSup"><span class="elsevierStyleBold">+</span></span> T lymphocytes may differentiate into T helper 17 or inducible T regulatory (iTreg) lymphocytes depending on the cytokine environment to which they are exposed in order to secrete IL-17 or TGF-β, respectively.<a class="elsevierStyleCrossRefs" href="#bib0325"><span class="elsevierStyleSup">19,26,27</span></a> CD8<span class="elsevierStyleSup"><span class="elsevierStyleBold">+</span></span> T lymphocytes play their role in the immune response against infection with <span class="elsevierStyleItalic">T. cruzi</span> by eliminating infected cells through the production of IFN-γ, perforin, and granzyme B or through the Fas/Fas ligand pathway.<a class="elsevierStyleCrossRefs" href="#bib0365"><span class="elsevierStyleSup">27,28</span></a></p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Pathophysiology</span><p id="par0130" class="elsevierStylePara elsevierViewall">The production of virulence factors by <span class="elsevierStyleItalic">T. cruzi</span> during the acute phase strongly inhibits the response of the host's immune system, thereby inducing anergia and clonal deletion of T lymphocytes, along with a strong polyclonal stimulation of B lymphocytes that secrete antibodies with a low affinity towards <span class="elsevierStyleItalic">T. cruzi</span> antigens. This promotes persistence of the infection and its progression towards the chronic phase of the disease. Within the chronic phase, the mechanisms behind the transition from the asymptomatic phase to the symptomatic phase have not yet been fully elucidated. However, it is believed that there are many factors involved, such as differences between <span class="elsevierStyleItalic">T. cruzi</span> strains, parasite load, infection time, genetic background, and host immune response.<a class="elsevierStyleCrossRefs" href="#bib0370"><span class="elsevierStyleSup">28,29</span></a></p><p id="par0135" class="elsevierStylePara elsevierViewall">Some theories have attempted to explain the pathophysiological process of the disease, including: theory of parasite persistence (this is based on the fact that the presence and replication of amastigotes in host cells cause mechanical rupture and waste secretion which attract pro-inflammatory cells); unified neurogenic theory (this is based on the fact that significant neuron loss in the sympathetic and parasympathetic nervous systems is unrelated to the presence of <span class="elsevierStyleItalic">T. cruzi in situ</span>, and is attributed to production and release of a neurotoxin from a parasite nest hidden in the host's body); and autoimmune theory (this is based on the accelerated cytotoxic interaction that exists between lymphocytes related to the immune response to <span class="elsevierStyleItalic">T. cruzi</span> and allogeneic myocardiocytes not infested with parasites). Each one shows unique discrepancies, which may be explained from a clinical point of view by the difficulty of determining pathogenicity after a prolonged period of time has elapsed between infection with <span class="elsevierStyleItalic">T. cruzi</span> and development of its complications.<a class="elsevierStyleCrossRef" href="#bib0325"><span class="elsevierStyleSup">19</span></a> However, their analysis lies beyond the scope of this review.</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Risk factors</span><p id="par0140" class="elsevierStylePara elsevierViewall">Risk factors for acquiring Chagas disease include: quality of rural dwelling (type of construction and materials used to finish the floors, walls, and ceilings), lack of awareness of the risk of living with triatomines, and absence of epidemiological control and monitoring programmes that involve the community.<a class="elsevierStyleCrossRef" href="#bib0380"><span class="elsevierStyleSup">30</span></a></p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Clinical manifestations</span><p id="par0145" class="elsevierStylePara elsevierViewall">American trypanosomiasis occurs and progresses in phases. The clinical spectrum of the disease is very broad. During the acute phase, non-specific manifestations may develop. During the chronic phase, specific manifestations may develop.</p><p id="par0150" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Acute phase:</span> This has an incubation period of 4–14 days, starting from parasite inoculation, and a duration of 2–4 months. It is characterised by the absence of symptoms in 95% of cases. The remaining 5% of cases may have signs and symptoms related to the inoculation site or systemic manifestations. Signs and symptoms related to the inoculation site include: Romaña's sign (painless, indurated, pruritic, purplish, bipalpebral, unilateral, periocular oedema that makes it difficult to open the eyelids, thereby causing limited conjunctival secretion, dacryoadenitis, and preauricular satellite adenopathy); and chagoma (a raised, erythematous, oedematous, indurated, and moderately painful subcutaneous nodule that is approximately 3<span class="elsevierStyleHsp" style=""></span>cm in diameter). These may be associated with enlarged cervical lymph nodes that are approximately 1–2<span class="elsevierStyleHsp" style=""></span>cm in diameter, painful on palpation, soft in consistency, with well defined edges, and not adhered to deep planes. Systemic manifestations that may occur include the following: fever, asthenia, adynamia, myalgia, arthralgia, headache, myocarditis, and hepatosplenomegaly. Myocarditis may occur with or without manifestations of cardiac compromise such as tachycardia, gallop rhythm, PR and/or QT interval prolongation, decrease in QRS voltage, premature ventricular contractions, right bundle branch block, T-wave changes, pericarditis, cardiac tamponade, and heart failure.<a class="elsevierStyleCrossRefs" href="#bib0240"><span class="elsevierStyleSup">2,20,30–32</span></a><ul class="elsevierStyleList" id="lis0035"><li class="elsevierStyleListItem" id="lsti0080"><span class="elsevierStyleLabel">-</span><p id="par0155" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Chagas disease and immunosuppression:</span> This has a more prolonged incubation period and is more severe than in immunocompetent patients. It manifests through fever, myalgia, arthralgia, multiple dermatoses, and hepatosplenomegaly. Meningoencephalitis, pericarditis, and/or myocarditis may develop, especially in children and the elderly. Dermatoses may manifest through the presence of chagomas (blisters or bullae with abundant trypomastigotes inside); morbilliform, pruritic, and polymorphous erythematous nodules or rashes. The manifestations of meningoencephalitis depend on the size and location of the lesions. Altered mental status, seizures, headache, hemiparesis, and tremors may occur. In patients infected with human immunodeficiency virus (HIV) who have developed AIDS, acute diffuse meningoencephalitis or multifocal necrotising encephalitis with abscesses tends to occur and may progress to coma and death.<a class="elsevierStyleCrossRef" href="#bib0395"><span class="elsevierStyleSup">33</span></a></p></li><li class="elsevierStyleListItem" id="lsti0085"><span class="elsevierStyleLabel">-</span><p id="par0160" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Congenital Chagas disease:</span> This is characterised by the absence of symptoms in 70–80% of cases. The remaining 20–30% of cases may have signs and symptoms such as prematurity, smallness for gestational age, poor general condition, oedema, jaundice, respiratory distress, persistent tachycardia, hepatosplenomegaly, and anaemia. Occasionally sepsis, fever, hydrops fetalis, exanthema, petechiae, lymphadenopathy, meningoencephalitis, cerebral calcifications, eye fundus abnormalities, megaoesophagus, interstitial pneumonia, myocarditis, heart failure, megabladder, <span class="elsevierStyleItalic">etc.</span> may occur. It may be classified as: asymptomatic, early-symptom (<30 days of life) or late-symptom (>30 days of life). In addition, the presence of HIV or AIDS worsens the clinical course of these patients as previously mentioned.<a class="elsevierStyleCrossRefs" href="#bib0330"><span class="elsevierStyleSup">20,31,32,34</span></a></p></li></ul></p><p id="par0165" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Asymptomatic or indeterminate chronic phase:</span> This is characterised by the absence of symptoms and the presence of positive serology and/or parasitaemia. It may last months or years, depending on the immune status of the patient and the replication rate of the amastigotes. This form persists in up to 30% of patients with the disease, while the rest may progress to the symptomatic chronic form over a period of 10–30 years.<a class="elsevierStyleCrossRefs" href="#bib0385"><span class="elsevierStyleSup">31,32</span></a></p><p id="par0170" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Symptomatic or determinate chronic phase:</span> This is characterised by the presence of chronic heart disease (cardiomegaly) and/or gastrointestinal disease (megaoesophagus, megastomach, megabladder, megagallbladder, megaduodenum, megajejunum, megaileum, and megacolon) with low, fluctuating parasitaemia levels. Antibody titres may be detected in immunocompetent patients. Neurological findings are rare. However, it is known that there is damage to the autonomic nervous system which results in abnormalities in cardiovascular autonomic function. The sympathetic and parasympathetic nervous systems show a reduction in the number of neurons. This compromises the innervation of cardiac muscle and the smooth muscle of the oesophagus, stomach, colon, bronchi, urethra, and bladder. In addition, the peripheral nervous system shows a decrease in conduction speed, thereby compromising neuromuscular transmission. The presence of signs and symptoms such as seizures, fever, dizziness, syncope, headache, nausea, vomiting, dyspepsia, and fullness associated to prolongation of gastric emptying has been reported.<a class="elsevierStyleCrossRefs" href="#bib0380"><span class="elsevierStyleSup">30–32</span></a><ul class="elsevierStyleList" id="lis0040"><li class="elsevierStyleListItem" id="lsti0090"><span class="elsevierStyleLabel">-</span><p id="par0175" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Chagas heart disease:</span> This occurs in 10–30% of cases and represents the main cause of mortality due to this disease (<span class="elsevierStyleItalic">sudden cardiac death</span> [55–63%], progressive heart failure [20–25%], and thromboembolic complications [10–15%]). There are overall and segmental contractility abnormalities, arrhythmias (sinus bradycardia, sinus tachycardia, atrial fibrillation, atrial flutter, ventricular tachycardia or premature ventricular contractions), and conduction disorders secondary to damage to the excitation/conduction system (atrioventricular block, right bundle branch block, left bundle branch block or left anterior fascicular block), valve insufficiency, and heart failure. People with dilated cardiomyopathy may have thromboembolic phenomena leading to pulmonary embolism (PE) and/or cerebrovascular disease (CVD). In addition, there is fibrosis which leads to apical microaneurysms in the left ventricle. It manifests through dyspnoea (42%), precordial pain (42%), palpitations (31%), syncope (27%), and faintness (24%). On physical examination, heart murmurs may occasionally be auscultated.<a class="elsevierStyleCrossRefs" href="#bib0380"><span class="elsevierStyleSup">30–32,35</span></a></p></li><li class="elsevierStyleListItem" id="lsti0095"><span class="elsevierStyleLabel">-</span><p id="par0180" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Chagas oesophageal disease (megaoesophagus):</span> Intramural parasympathetic denervation develops, leading to hypertrophy of the muscle layers and progressive loss of contractile capacity. This results in oesophageal dilatation and elongation. It manifests through odynophagia, progressive dysphagia, regurgitation, pyrosis, retrosternal pain, hiccups, sniffing, and coughing. On physical examination, oropharyngeal hyperaemia secondary to the presence of gastro-oesophageal reflux disease may be observed.<a class="elsevierStyleCrossRefs" href="#bib0380"><span class="elsevierStyleSup">30,31,36</span></a></p></li><li class="elsevierStyleListItem" id="lsti0100"><span class="elsevierStyleLabel">-</span><p id="par0185" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Chagas colon disease (megacolon):</span> Intramural parasympathetic denervation also develops. This results in motor dysfunction and colonic dilatation, thereby causing absorption and secretion disorders. It manifests through tympanites, abdominal distension, and dyschezia secondary to progressive constipation which may lead to the formation of faecalomas, volvulus, and intestinal obstruction and ischaemia. On physical examination, a faecaloma may be palpated in the left iliac fossa or by means of a digital rectal examination.<a class="elsevierStyleCrossRefs" href="#bib0380"><span class="elsevierStyleSup">30,31,36</span></a></p></li></ul></p></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Diagnosis</span><p id="par0190" class="elsevierStylePara elsevierViewall">If Chagas disease is suspected, epidemiological background and clinical manifestations should be considered so that the relevant studies may be ordered. The diagnosis is made through direct or indirect parasitological methods and molecular methods during the acute phase, and through serological and office-based methods during the chronic phase. Direct parasitological methods confirm the presence of <span class="elsevierStyleItalic">T. cruzi</span> or its genetic material in samples and include: examination of fresh samples, blood smear, thick film, micro-Strout test, and Strout's concentration method. Indirect parasitological methods include: xenodiagnosis and blood culture. Molecular methods such as polymerase chain reaction (PCR) may be useful. Serological methods demonstrate the presence of specific anti-<span class="elsevierStyleItalic">T. cruzi</span> antibodies in samples and include: enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence (IIF), indirect haemagglutination (IHA), and Western blot (WB).<a class="elsevierStyleCrossRef" href="#bib0415"><span class="elsevierStyleSup">37</span></a></p><p id="par0195" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Acute phase:</span> In examinations in which the presence of the parasite is confirmed, confirmation by means of other methods is not required. In examinations in which the presence of the parasite is confirmed through its genetic material, the following should be considered: patients under the age of 9 months and immunocompromised patients require 2 positive results in different samples, while patients over the age of 9 months require 1 positive result and detection of antibodies for the diagnosis to be confirmed.<a class="elsevierStyleCrossRef" href="#bib0290"><span class="elsevierStyleSup">12</span></a><ul class="elsevierStyleList" id="lis0045"><li class="elsevierStyleListItem" id="lsti0105"><p id="par0200" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Direct parasitological methods:</span></p></li></ul><ul class="elsevierStyleList" id="lis0050"><li class="elsevierStyleListItem" id="lsti0110"><span class="elsevierStyleLabel">-</span><p id="par0205" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Examination of fresh samples:</span> This is based on obtaining a drop of blood from the patient to be observed through a light microscope in search of mobile trypomastigotes. It can be performed in laboratories with minimal resources.<a class="elsevierStyleCrossRefs" href="#bib0335"><span class="elsevierStyleSup">21,37</span></a></p></li><li class="elsevierStyleListItem" id="lsti0115"><span class="elsevierStyleLabel">-</span><p id="par0210" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Blood smear:</span> This is based on obtaining a drop of blood from the patient to be stained with Giemsa, Romanowsky, or Wright's stain and observed through a light microscope in search of trypomastigotes. It allows the morphology of <span class="elsevierStyleItalic">T. cruzi</span> to be identified.<a class="elsevierStyleCrossRefs" href="#bib0335"><span class="elsevierStyleSup">21,37</span></a></p></li><li class="elsevierStyleListItem" id="lsti0120"><span class="elsevierStyleLabel">-</span><p id="par0215" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Thick film:</span> This is based on obtaining, concentrating, and defibrinating a drop of blood from the patient to be stained with Giemsa, Romanowsky, or Wright's stain and observed through a light microscope in search of trypomastigotes. This is the method of choice to be used in areas where there is also malaria.<a class="elsevierStyleCrossRefs" href="#bib0335"><span class="elsevierStyleSup">21,37</span></a></p></li><li class="elsevierStyleListItem" id="lsti0125"><span class="elsevierStyleLabel">-</span><p id="par0220" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Micro-Strout test:</span> This is based on obtaining and centrifuging a sample of blood from the patient for the leucocyte fraction to be observed through a light microscope in search of trypomastigotes. It can be performed in laboratories with minimal resources and is especially useful for early detection of congenital Chagas disease.<a class="elsevierStyleCrossRefs" href="#bib0335"><span class="elsevierStyleSup">21,37</span></a></p></li><li class="elsevierStyleListItem" id="lsti0130"><span class="elsevierStyleLabel">-</span><p id="par0225" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Strout concentration method:</span> This is based on obtaining a sample of blood from the patient, centrifuging it to remove the erythrocyte fraction, concentrating the parasites in the sediment by discarding the supernatant, and observing it through a light microscope in search of trypomastigotes. It can be performed in laboratories with minimal resources.<a class="elsevierStyleCrossRefs" href="#bib0335"><span class="elsevierStyleSup">21,37</span></a></p></li></ul><ul class="elsevierStyleList" id="lis0055"><li class="elsevierStyleListItem" id="lsti0135"><p id="par0230" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Indirect parasitological methods:</span></p></li></ul><ul class="elsevierStyleList" id="lis0060"><li class="elsevierStyleListItem" id="lsti0140"><span class="elsevierStyleLabel">-</span><p id="par0235" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Xenodiagnosis:</span> This is based on feeding uninfected triatomines with blood from a patient probably infected with <span class="elsevierStyleItalic">T. cruzi</span> and examining the intestine and/or its excretions through a light microscope in search of epimastigotes and/or trypomastigotes. The procedure may be performed naturally or artificially, and the haemolymph and salivary glands of the triatomines used must always be reviewed to detect the presence of <span class="elsevierStyleItalic">Trypanosoma rangeli</span>, which is morphologically similar to <span class="elsevierStyleItalic">T.</span> cruzi and is often a reason for false positive results.<a class="elsevierStyleCrossRef" href="#bib0335"><span class="elsevierStyleSup">21</span></a></p></li><li class="elsevierStyleListItem" id="lsti0145"><span class="elsevierStyleLabel">-</span><p id="par0240" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Blood culture:</span> This is based on obtaining a sample of blood from the patient and seeding it in Tobie's medium to be observed weekly through a field inverted microscope until it is isolated. Once isolated, it is cultured in liquid media, such as liver infusion tryptose (LIT) or brain heart infusion (BHI), for its maintenance. It is used to increase the concentration of <span class="elsevierStyleItalic">T. cruzi</span> to obtain an antigen that can be used for molecular and serological diagnosis. It is especially useful for early detection of congenital transmission.<a class="elsevierStyleCrossRef" href="#bib0335"><span class="elsevierStyleSup">21</span></a></p></li></ul><ul class="elsevierStyleList" id="lis0065"><li class="elsevierStyleListItem" id="lsti0150"><p id="par0245" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Molecular methods</span></p></li></ul><ul class="elsevierStyleList" id="lis0070"><li class="elsevierStyleListItem" id="lsti0155"><span class="elsevierStyleLabel">-</span><p id="par0250" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Polymerase chain reaction (PCR):</span> This is based on obtaining a sample of blood from the patient to be subjected to multiple cycles of denaturation, hybridisation, and amplification of DNA segments from <span class="elsevierStyleItalic">T. cruzi</span> (qualitative PCR), or to measure the circulating parasite load (quantitative PCR). It is especially useful for early detection of congenital transmission, transmission by organ transplant, accidental transmission due to occupational exposure, and transmission in cases of immunocompromise.<a class="elsevierStyleCrossRefs" href="#bib0335"><span class="elsevierStyleSup">21,37</span></a></p></li></ul></p><p id="par0255" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Chronic phase:</span> At least 2 serological methods with different principles should be used. If the result is positive in both, the diagnosis is confirmed, whereas if the results are incongruous, a third test should be used to confirm or reject them.<a class="elsevierStyleCrossRef" href="#bib0335"><span class="elsevierStyleSup">21</span></a><ul class="elsevierStyleList" id="lis0075"><li class="elsevierStyleListItem" id="lsti0160"><p id="par0260" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Serological methods</span></p></li></ul><ul class="elsevierStyleList" id="lis0080"><li class="elsevierStyleListItem" id="lsti0165"><p id="par0265" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Enzyme-linked immunosorbent assay:</span> This is based on obtaining a sample of blood from the patient and placing it on polystyrene plates containing <span class="elsevierStyleItalic">T. cruzi</span> antigens. If the serum contains anti-<span class="elsevierStyleItalic">T. cruzi</span> antibodies, a colourimetric reaction occurs that is detected by adding a second antibody with a specific substrate, which may be observed through a spectrophotometer. It has a sensitivity of approximately 94–100% and a specificity of approximately 96–100%. Its results are considered to be positive when titres are greater than or equal to double the value of the cut-off point for optical absorbance or density, which is different for each specific kit.<a class="elsevierStyleCrossRefs" href="#bib0245"><span class="elsevierStyleSup">3,21,37,38</span></a></p></li><li class="elsevierStyleListItem" id="lsti0170"><p id="par0270" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Indirect immunofluorescence:</span> This is based on obtaining a sample of blood from the patient and placing it on glass plates with wells containing <span class="elsevierStyleItalic">T. cruzi</span> antigens (epimastigotes). If the serum contains anti-<span class="elsevierStyleItalic">T. cruzi</span> antibodies, a reaction occurs that is detected by adding a second antibody labelled with fluorescein, which may be observed through a fluorescence microscope. It has a sensitivity and a specificity of approximately 98%. Its results are considered to be positive when titres are greater than or equal to 1:32 and may have cross-reactivity with <span class="elsevierStyleItalic">Leishmania</span> or <span class="elsevierStyleItalic">T. rangeli</span>.<a class="elsevierStyleCrossRefs" href="#bib0245"><span class="elsevierStyleSup">3,21,37,38</span></a></p></li><li class="elsevierStyleListItem" id="lsti0175"><p id="par0275" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Indirect haemagglutination:</span> This is based on obtaining a sample of blood from the patient and sensitising the surface of the erythrocytes with <span class="elsevierStyleItalic">T. cruzi</span> antigens that interact with anti-<span class="elsevierStyleItalic">T. cruzi</span> antibodies. This causes a reaction that generates agglutination and which may be observed. It has a sensitivity of approximately 88–99% and a specificity of approximately 96–100%. Its results are considered to be positive depending on the cut-off point for each specific kit.<a class="elsevierStyleCrossRefs" href="#bib0245"><span class="elsevierStyleSup">3,21,37,38</span></a></p></li></ul><ul class="elsevierStyleList" id="lis0085"><li class="elsevierStyleListItem" id="lsti0180"><span class="elsevierStyleLabel">-</span><p id="par0280" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Western blot:</span> This is based on detecting anti-<span class="elsevierStyleItalic">T. cruzi</span> antibodies that have been previously separated through electrophoresis and subsequently transferred to a membrane on which an enzyme reaction that detects their presence is performed. It has a sensitivity and a specificity of approximately 100%. To date, there is no commercial kit available for use in Chagas disease.<a class="elsevierStyleCrossRefs" href="#bib0245"><span class="elsevierStyleSup">3,21,37,38</span></a></p></li></ul></p><p id="par0285" class="elsevierStylePara elsevierViewall">To diagnose congenital Chagas disease, serological methods are ordered to detect infection in the mother, while parasitological (examination of fresh samples) and molecular (PCR) methods are ordered to detect infection in the child. Umbilical cord blood or peripheral blood is obtained during the first 2 months of life. If the results are positive or there is a desire to make the diagnosis after the first 2 months, ELISA and IIF should be requested at 9–12 months, after the level of maternal antibodies transferred has disappeared.<a class="elsevierStyleCrossRef" href="#bib0385"><span class="elsevierStyleSup">31</span></a></p><p id="par0290" class="elsevierStylePara elsevierViewall">To diagnose Chagas meningoencephalitis in patients with AIDS, the following are ordered: a head CT scan (single or multiple hypodense areas with perilesional oedema and a mass effect with displacement of the midline), brain biopsy (widespread multifocal, necrohaemorrhagic encephalitis with obliterative angiitis and amastigotes in glial cells, macrophages, and endothelial cells), and lumbar puncture.<a class="elsevierStyleCrossRef" href="#bib0395"><span class="elsevierStyleSup">33</span></a></p><p id="par0295" class="elsevierStylePara elsevierViewall">To diagnose Chagas heart disease, the following are requested: chest X-rays (cardiomegaly with or without effusion), electrocardiogram (arrhythmias and blocks), echocardiogram (microaneurysms, fibrosis, decrease in contractility, and abnormal ejection fraction), magnetic resonance imaging (MRI) (structural abnormalities), and scintigraphy.<a class="elsevierStyleCrossRefs" href="#bib0385"><span class="elsevierStyleSup">31,32</span></a></p><p id="par0300" class="elsevierStylePara elsevierViewall">To diagnose Chagas oesophageal disease, chest and abdominal X-rays (gastroduodenal series), manometry, and panendoscopy are ordered, as deemed necessary. To diagnose Chagas colon disease, the following are ordered: plain abdominal X-rays, barium enema, and colonoscopy.<a class="elsevierStyleCrossRefs" href="#bib0385"><span class="elsevierStyleSup">31,32</span></a></p></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Treatment</span><p id="par0305" class="elsevierStylePara elsevierViewall">Currently, there are two anti-trypanocidal drugs available that are used to treat infection with <span class="elsevierStyleItalic">T. cruzi</span>: benznidazole and nifurtimox. Both have very high trypanocidal activity during the acute phase of the disease: up to 100% in neonates and up to 80–90% in children and adults identified and treated in a timely manner. However, they have very low trypanocidal activity during the chronic phase of the disease.<a class="elsevierStyleCrossRefs" href="#bib0250"><span class="elsevierStyleSup">4,39</span></a><ul class="elsevierStyleList" id="lis0090"><li class="elsevierStyleListItem" id="lsti0185"><span class="elsevierStyleLabel">(a)</span><p id="par0310" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Benznidazole:</span> This is a nitroimidazole-derived trypanocide that is absorbed rapidly in the gastrointestinal tract. <span class="elsevierStyleBold">Mechanism of action:</span> It acts through covalent modification of macromolecules by nitro-reduction of intermediates. <span class="elsevierStyleBold">Pack size:</span> 100<span class="elsevierStyleHsp" style=""></span>mg tablets. <span class="elsevierStyleBold">Dose:</span> Neonates are administered 5<span class="elsevierStyleHsp" style=""></span>mg/kg/day divided into 2 doses. Children are administered 10<span class="elsevierStyleHsp" style=""></span>mg/kg/day divided into 2 doses. Adults are administered 5–7<span class="elsevierStyleHsp" style=""></span>mg/kg/day divided into 2 doses. <span class="elsevierStyleBold">Duration:</span> 60 days in neonates, children, and adults. <span class="elsevierStyleBold">Adverse reactions:</span> The most common adverse effects are dermatological effects (29–50%). Skin rashes due to photosensitisation occur during the first 2 weeks of treatment. Peripheral neuropathy is dose-dependent, appears late in the course of treatment, and is an indication for suspending treatment (0–30%). Bone marrow suppression occurs very rarely (<1%). Other reported adverse effects include anorexia and weight loss (5–40%), paraesthesia (0–30%), nausea and vomiting (0–5%), and leukopenia and/or thrombocytopenia (<1%).<a class="elsevierStyleCrossRefs" href="#bib0430"><span class="elsevierStyleSup">40,41</span></a></p></li></ul><ul class="elsevierStyleList" id="lis0130"><li class="elsevierStyleListItem" id="lsti0190"><p id="par0315" class="elsevierStylePara elsevierViewall">Prior to administering treatment with benznidazole, the following laboratory tests should be ordered: complete blood count, blood chemistry, serum elec-trolytes, liver function tests, and general urinalysis. The complete blood count should be repeated every 2–3 weeks throughout and at the end of treatment.<a class="elsevierStyleCrossRef" href="#bib0380"><span class="elsevierStyleSup">30</span></a></p></li></ul><ul class="elsevierStyleList" id="lis0125"><li class="elsevierStyleListItem" id="lsti0195"><span class="elsevierStyleLabel">(b)</span><p id="par0320" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Nifurtimox:</span> This is a nitrofuran compound that is appropriately absorbed by the gastrointestinal tract. <span class="elsevierStyleBold">Mechanism of action:</span> It acts through reduction of the nitrous group to form unstable radicals such as nitroanion, which is highly reactive and produces highly toxic reduced O<span class="elsevierStyleInf">2</span> metabolites such as H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span> and O<span class="elsevierStyleSup">−</span>. It inhibits pyruvic acid synthesis and interrupts <span class="elsevierStyleItalic">T. cruzi</span> carbohydrate metabolism. <span class="elsevierStyleBold">Pack size:</span> 30, 120, and 250<span class="elsevierStyleHsp" style=""></span>mg tablets. <span class="elsevierStyleBold">Dose:</span> Neonates are administered 10<span class="elsevierStyleHsp" style=""></span>mg/kg/day divided into 3 doses. Children are administered 15–20<span class="elsevierStyleHsp" style=""></span>mg/kg/day divided into 4 doses. Adults are administered 8–10<span class="elsevierStyleHsp" style=""></span>mg/kg/day divided into 4 doses. <span class="elsevierStyleBold">Duration:</span> 60 days in neonates and 90 days in children and adults. <span class="elsevierStyleBold">Adverse reactions:</span> The most common adverse effects are gastrointestinal effects (70%), anorexia and weight loss (50–70%), abdominal pain (12–40%), and nausea and/or vomiting (15–26%). Neurological abnormalities may occur. Irritability, disorientation, insomnia, and trembling are among the most common, and paraesthesia, polyneuropathy, and distal neuritis are among the least common. Peripheral neuropathy (2–5%) is dose-dependent, appears late in the course of treatment, and is an indication for suspending treatment. Other reported adverse effects include headache (13–70%), vertigo (12–33%), myalgia (13–30%), and leukopenia (<1%).<a class="elsevierStyleCrossRefs" href="#bib0380"><span class="elsevierStyleSup">30,32,41</span></a></p></li></ul><ul class="elsevierStyleList" id="lis0100"><li class="elsevierStyleListItem" id="lsti0200"><p id="par0325" class="elsevierStylePara elsevierViewall">Prior to administering treatment with nifurtimox, the following laboratory tests should be ordered: complete blood count, blood chemistry, serum electrolytes, liver function tests, and general urinalysis. The complete blood count should be repeated 4–6 weeks after the start and at the end of treatment.<a class="elsevierStyleCrossRef" href="#bib0380"><span class="elsevierStyleSup">30</span></a></p></li></ul></p><p id="par0330" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Indications:</span> Acute, congenital, reactive, or chronic infection in children under the age of 18, and adults aged 19–50 years with no evidence of advanced cardiomyopathy.<a class="elsevierStyleCrossRef" href="#bib0245"><span class="elsevierStyleSup">3</span></a></p><p id="par0335" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Contraindications:</span> Both drugs are contraindicated during pregnancy and in patients with liver and/or kidney failure.<a class="elsevierStyleCrossRef" href="#bib0380"><span class="elsevierStyleSup">30</span></a></p><p id="par0340" class="elsevierStylePara elsevierViewall">Currently, the WHO and clinical practice guidelines (CPGs) recommend the use of benznidazole as a first-line treatment for Chagas disease, given that there is greater clinical evidence of its efficacy, it is better tolerated by patients, and it has fewer adverse effects than nifurtimox.<a class="elsevierStyleCrossRef" href="#bib0245"><span class="elsevierStyleSup">3</span></a></p><p id="par0345" class="elsevierStylePara elsevierViewall">Treatment of Chagas heart disease tends to be resistant to routinely used treatments. Anticoagulants are administered as prophylaxis for PE and CVD, while anti-arrhythmic agents are administered for premature ventricular contractions. Pacemakers are implanted for third-degree atrioventricular block, while for congestive heart failure, ventricular assist devices are implanted, vasodilators, β-blockers, and diuretics are administered, or heart transplants are performed, as required. Such treatment is provided in addition to implementation of hygiene and dietary measures.<a class="elsevierStyleCrossRefs" href="#bib0330"><span class="elsevierStyleSup">20,31</span></a></p><p id="par0350" class="elsevierStylePara elsevierViewall">Treatment of Chagas oesophageal disease consists of measures that facilitate oesophageal emptying: lower oesophageal sphincter relaxants, pneumatic dilatation, botulinum toxin, and traditional or laparoscopic cardiomyotomy. Such treatment is provided in addition to implementation of hygiene and dietary measures.<a class="elsevierStyleCrossRefs" href="#bib0380"><span class="elsevierStyleSup">30,31</span></a></p><p id="par0355" class="elsevierStylePara elsevierViewall">Treatment of Chagas colon disease consists of measures that facilitate colon emptying: laxatives, cleansing enemas, and colectomy of the affected area, as required. Such treatment is provided in addition to implementation of hygiene and dietary measures.<a class="elsevierStyleCrossRefs" href="#bib0380"><span class="elsevierStyleSup">30,31</span></a></p><p id="par0360" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Follow-up:</span> For follow-up of treatment, weekly medical supervision is recommended. For monitoring of treatment response, it is recommended that the decrease in anti-<span class="elsevierStyleItalic">T. cruzi</span> antibody titres be documented using IIF, and that titres equal to or greater than 1:16 be considered to be positive. Recovery is considered to consist of persistent negative parasitology and serology (two negative tests with a lapse of twelve months from the end of treatment between each one).<a class="elsevierStyleCrossRefs" href="#bib0335"><span class="elsevierStyleSup">21,30</span></a></p></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Prevention</span><p id="par0365" class="elsevierStylePara elsevierViewall">Over the past decade, the number of studies aimed at formulating both prophylactic and therapeutic vaccines for infection with <span class="elsevierStyleItalic">T. cruzi</span> has increased. Various antigens have been used as immunogens to observe the development of the disease. Recombinant DNA and protein vaccines (ASP-1, ASP-2, CCL4/MIP-1 β chemokine, Cruzipain, trans-sialidase catalytic domain, ANYNFTLV epitope, TSSA CD8<span class="elsevierStyleSup">+</span> epitope, GP83, KMP11-H70, LYT1, MASP, PFR2, PFR2-H70, PFR3, PFR3-H70, PFR3m, rTcSP2 and rTcSP2-CHP, Tc13, Tc24, Tc52, TcG1, TcG2, TcG4, TcSP, TcSSP4, TcVac2, TcVac4, TS, and TSA-1), as well as vaccines containing live attenuated parasites (<span class="elsevierStyleItalic">T. cruzi</span> and <span class="elsevierStyleItalic">T. rangeli</span>), have been used and demonstrated to have various levels of protection with respect to parasitaemia, clinical manifestations, severity of cardiac damage, and survival in the preclinical phase. However, currently, there is no vaccine in the clinical phase, and although the future is promising, the development of an effective vaccine against <span class="elsevierStyleItalic">T. cruzi</span> has encountered many difficulties, since Chagas disease is almost exclusive to poor and marginalised societies and therefore lacks commercial incentive for the pharmaceutical industry. Prophylactic vaccines could be administered in areas characterised as being highly endemic, thus preventing infection, while therapeutic vaccines could be administered to patients who are seropositive for <span class="elsevierStyleItalic">T. cruzi</span> and in the asymptomatic phase, thus preventing the development of Chagas heart disease. In addition, it is estimated that close to 10,000 deaths per year would be prevented and up to 600,000 disability-adjusted life years (DALYs) would be saved.<a class="elsevierStyleCrossRefs" href="#bib0430"><span class="elsevierStyleSup">40,42–44</span></a></p><p id="par0370" class="elsevierStylePara elsevierViewall">At present, the main strategies to combat the disease involve preventive strategies such as home improvement, systematic spraying of insecticides, and health education, as well as control of blood samples at blood banks and monitoring of all pregnant women.<a class="elsevierStyleCrossRef" href="#bib0425"><span class="elsevierStyleSup">39</span></a></p></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Conclusion</span><p id="par0375" class="elsevierStylePara elsevierViewall">Chagas disease is recognised as one of the 17 neglected tropical diseases that affect millions of people worldwide. It is considered to be the most significant zoonosis in Latin America and is the fourth leading cause of disability (after respiratory infections, gastrointestinal infections, and HIV/AIDS).<a class="elsevierStyleCrossRef" href="#bib0455"><span class="elsevierStyleSup">45</span></a> Although its exact prevalence and distribution is unknown in Mexico, it remains a serious problem for Mexican health services.</p><p id="par0380" class="elsevierStylePara elsevierViewall">The extensive study that has been done of subjects, ranging from the epidemiology of the disease to its diagnosis, has expanded knowledge of the disease and how to combat it. In the past century, multiple vector control and prevention programmes have been carried out throughout areas that are considered to be highly endemic. These have decreased its incidence dramatically. However, the objective of these measures is not to eradicate the disease. A large part of the population remains unaware of the disease, those who are aware of it ignore its presence, and those who suffer from it are neither diagnosed nor treated in a timely manner. In addition, the medicines available to treat Chagas disease are partially effective, and the efforts made to develop a vaccine for populations at risk of acquiring the disease remain insufficient.</p><p id="par0385" class="elsevierStylePara elsevierViewall">Only 1% of the new drugs registered are aimed at controlling neglected tropical diseases, whereas close to 90% of investment in research and development in the pharmaceutical industry is aimed at creating drugs designed for the 10% of the population with the greatest revenue.<a class="elsevierStyleCrossRef" href="#bib0460"><span class="elsevierStyleSup">46</span></a> Therefore, it is essential to combat poverty, spread knowledge on methods of prevention, train general practitioners and specialist physicians to provide timely care to those suffering from it, and increase resources intended to treat it to bring patients suffering from a silent, devastating disease out of oblivion.</p></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Ethical disclosure</span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Protection of human and animal subjects</span><p id="par0390" class="elsevierStylePara elsevierViewall">The authors declare that no experiments were performed on humans or animals for this study.</p></span><span id="sec0075" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0105">Confidentiality of data</span><p id="par0395" class="elsevierStylePara elsevierViewall">The authors declare that no patient data appear in this article.</p></span><span id="sec0080" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0110">Right to privacy and informed consent</span><p id="par0400" class="elsevierStylePara elsevierViewall">The authors declare that no patient data appear in this article.</p></span></span><span id="sec0085" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0115">Funding</span><p id="par0405" class="elsevierStylePara elsevierViewall">The authors declare that the preparation of the manuscript did not require any funding.</p></span><span id="sec0090" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0120">Conflict of interest</span><p id="par0410" class="elsevierStylePara elsevierViewall">The authors declare that they have no conflicts of interest.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:23 [ 0 => array:3 [ "identificador" => "xres1057792" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1007434" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres1057793" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1007435" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:2 [ "identificador" => "sec0010" "titulo" => "Historical background" ] 6 => array:2 [ "identificador" => "sec0015" "titulo" => "Epidemiology" ] 7 => array:2 [ "identificador" => "sec0095" "titulo" => "Etiology" ] 8 => array:2 [ "identificador" => "sec0100" "titulo" => "Life cycle" ] 9 => array:2 [ "identificador" => "sec0105" "titulo" => "Transmission" ] 10 => array:2 [ "identificador" => "sec0025" "titulo" => "Immunology" ] 11 => array:2 [ "identificador" => "sec0030" "titulo" => "Pathophysiology" ] 12 => array:2 [ "identificador" => "sec0035" "titulo" => "Risk factors" ] 13 => array:2 [ "identificador" => "sec0040" "titulo" => "Clinical manifestations" ] 14 => array:2 [ "identificador" => "sec0045" "titulo" => "Diagnosis" ] 15 => array:2 [ "identificador" => "sec0050" "titulo" => "Treatment" ] 16 => array:2 [ "identificador" => "sec0055" "titulo" => "Prevention" ] 17 => array:2 [ "identificador" => "sec0060" "titulo" => "Conclusion" ] 18 => array:3 [ "identificador" => "sec0065" "titulo" => "Ethical disclosure" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0070" "titulo" => "Protection of human and animal subjects" ] 1 => array:2 [ "identificador" => "sec0075" "titulo" => "Confidentiality of data" ] 2 => array:2 [ "identificador" => "sec0080" "titulo" => "Right to privacy and informed consent" ] ] ] 19 => array:2 [ "identificador" => "sec0085" "titulo" => "Funding" ] 20 => array:2 [ "identificador" => "sec0090" "titulo" => "Conflict of interest" ] 21 => array:2 [ "identificador" => "xack357574" "titulo" => "Acknowledgments" ] 22 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2016-08-19" "fechaAceptado" => "2016-09-23" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1007434" "palabras" => array:5 [ 0 => "American trypanosomiasis" 1 => "Chagas disease" 2 => "Neglected tropical diseases" 3 => "Triatomines" 4 => "<span class="elsevierStyleItalic">Trypanosoma cruzi</span>" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1007435" "palabras" => array:5 [ 0 => "Tripanosomiasis Americana" 1 => "Enfermedad de Chagas" 2 => "Enfermedades tropicales desatendidas" 3 => "Triatominos" 4 => "<span class="elsevierStyleItalic">Trypanosoma cruzi</span>" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Chagas disease is a parasitic zoonosis caused by <span class="elsevierStyleItalic">Trypanosoma cruzi</span>, a protozoan whose transmission to humans is primarily vector-borne. It is estimated that 6–8 million people worldwide are infected and that 65–100 million people are at risk of becoming infected. Its clinical spectrum is very broad. During the acute phase, non-specific manifestations develop that may go unnoticed. During the chronic phase, specific manifestations develop that are diagnosed late and increase the morbidity and mortality of those suffering from it. The drugs available to treat it are partially effective, and the efforts made to develop a vaccine remain insufficient. This article reviews the most significant aspects of Chagas disease, from the discovery of the disease to the development of a vaccine, to help train general practitioners and specialists to provide timely care to those suffering from the disease.</p></span>" ] "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">La enfermedad de Chagas es una zoonosis parasitaria causada por <span class="elsevierStyleItalic">Trypanosoma cruzi</span>, un protozoario que se transmite principalmente de manera vectorial al ser humano. Se estima que entre 6-8 millones de personas alrededor del mundo se encuentran infectadas y que entre 65-100 millones están en riesgo de infectarse. Su espectro clínico es muy amplio, pudiendo desarrollar manifestaciones inespecíficas durante la fase aguda que pueden pasar desapercibidas y manifestaciones especificas durante la fase crónica que se diagnostican tardíamente e incrementan la morbimortalidad de quienes la padecen. Los medicamentos disponibles para su tratamiento son parcialmente eficaces y los esfuerzos para crear una vacuna aún continúan siendo insuficientes. En este artículo revisamos los aspectos más relevantes de la enfermedad de Chagas desde su descubrimiento hasta la vacuna, con el objetivo de contribuir en la preparación de médicos generales y especialistas para que proporcionen atención oportuna a quienes la padezcan.</p></span>" ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:46 [ 0 => array:3 [ "identificador" => "bib0235" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Chagas Disease-American trypanosomiasis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A. Kowalska" 1 => "P. Kowalski" 2 => "M. Torres" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Pol Ann Med" "fecha" => "2011" "volumen" => "18" "paginaInicial" => "156" "paginaFinal" => "167" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0240" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "La enfermedad de Chagas (tripanosomiasis americana); www.WHO.int; Available at: <a id="intr0005" class="elsevierStyleInterRef" href="http://www.who.int/mediacentre/factsheets/fs340/es/">http://www.who.int/mediacentre/factsheets/fs340/es/</a> [Updated March 2013, accessed 10.01.16]." ] ] ] 2 => array:3 [ "identificador" => "bib0245" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Chronic Chagas disease: from basics to laboratory medicine" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "A. Haberland" 1 => "S. Munoz" 2 => "G. Wallukat" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1515/cclm-2012-0316" "Revista" => array:6 [ "tituloSerie" => "Clin Chem Lab Med" "fecha" => "2013" "volumen" => "51" "paginaInicial" => "271" "paginaFinal" => "294" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23045386" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0250" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Barriers to treatment access for Chagas Disease in Mexico" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "J.M. Manne" 1 => "C.S. Snively" 2 => "J.M. Ramsey" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "PLoS Negl Trop Dis" "fecha" => "2013" "volumen" => "7" "paginaInicial" => "1" "paginaFinal" => "11" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0255" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "100 años de Chagas (1909–2009): revisión, balance y perspectiva" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "M. Sanmartino" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Rev Soc Entomol Argent" "fecha" => "2009" "volumen" => "68" "paginaInicial" => "243" "paginaFinal" => "252" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0260" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "El Chagas en la actualidad de Latinoamerica: Viejos y nuevos problemas, grandes desafíos" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "C. Amieva" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Rev Cienc Soc" "fecha" => "2014" "volumen" => "62" "paginaInicial" => "1" "paginaFinal" => "19" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0265" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Historia de la enfermedad de Chagas en Argentina: evolución conceptual, institucional y política" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "J.P. Zabala" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Hist Cienc Saude-Manguinhos" "fecha" => "2009" "volumen" => "16" "paginaInicial" => "57" "paginaFinal" => "74" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20027918" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0270" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "colaboracion" => "Ministerio de Sanidad y Política Social" "etal" => false ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2009" "paginaInicial" => "1" "paginaFinal" => "84" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0275" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Apuntes para la historia de la enfermedad de Chagas en México" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "O. Velasco" 1 => "B. Rivas" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Bol Med Hosp Infant Mex" "fecha" => "2008" "volumen" => "65" "paginaInicial" => "57" "paginaFinal" => "69" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0280" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Tripanosomiasis americana. Enfermedad de Chagas. Enfermedad de Chagas-Cruz. Enfermedad de Chagas-Mazza: historia de un epónimo" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "G. Murillo" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Med Int Mex" "fecha" => "2012" "volumen" => "28" "paginaInicial" => "182" "paginaFinal" => "186" ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0285" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Control de la infección por <span class="elsevierStyleItalic">Trypanosoma cruzi</span>/Enfermedad de Chagas en gestantes Latinoamericanas y sus hijos" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "F.J. Merino" 1 => "R. Martínez-Ruiz" 2 => "I. Olabarrieta" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Rev Esp Quimioter" "fecha" => "2013" "volumen" => "26" "paginaInicial" => "253" "paginaFinal" => "260" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24080893" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0290" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "Ministerio de Salud" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2014" "paginaInicial" => "1" "paginaFinal" => "98" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0295" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "Centro Nacional de Programas Preventivos y Control de Enfermedades" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2014" "paginaInicial" => "1" "paginaFinal" => "76" ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0300" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "OPS/WHO/NTD/IDM" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2006" "paginaInicial" => "1" "paginaFinal" => "29" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0305" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Enfermedad de Chagas en México" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "P.M. Salazar-Schettino" 1 => "M.I. Bucio-Torres" 2 => "M. Cabrera-Bravo" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Rev Fac Med UNAM" "fecha" => "2016" "volumen" => "59" "paginaInicial" => "7" "paginaFinal" => "16" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0310" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Enfermedad de Chagas Realidad y perspectivas" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "F. Guhl" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Rev Biomed" "fecha" => "2009" "volumen" => "20" "paginaInicial" => "228" "paginaFinal" => "234" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0315" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Recommendations from a satellite meeting" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "Anonymous" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Mem Inst Oswaldo Cruz" "fecha" => "1999" "volumen" => "94" "paginaInicial" => "429" "paginaFinal" => "432" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10677771" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0320" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A new consensus for <span class="elsevierStyleItalic">Trypanosoma cruzi</span> intraspecific nomenclature: second revision meeting recommends TcI to TcVI" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "B. Zingales" 1 => "S.G. Andrade" 2 => "M.R. Briones" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Mem Inst Oswaldo Cruz" "fecha" => "2009" "volumen" => "104" "paginaInicial" => "1051" "paginaFinal" => "1054" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20027478" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0325" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Pathogenesis of Chagas Disease: parasite persistence and autoimmunity" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "A.R.L. Texeira" 1 => "M.M. Hecht" 2 => "M.C. Guimaro" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1128/CMR.00063-10" "Revista" => array:6 [ "tituloSerie" => "Clin Microbiol Rev" "fecha" => "2011" "volumen" => "24" "paginaInicial" => "592" "paginaFinal" => "630" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21734249" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0330" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Consenso de Enfermedad de Chagas-Mazza" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "J.E. Mitelman" 1 => "A. Descalzo" 2 => "F. Niero" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Rev Argent Cardiol" "fecha" => "2011" "volumen" => "79" "paginaInicial" => "544" "paginaFinal" => "564" ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0335" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "colaboracion" => "Instituto Nacional de Salud" "etal" => false ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2010" "paginaInicial" => "1" "paginaFinal" => "49" ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0340" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Current understanding of immunity to <span class="elsevierStyleItalic">Trypanosoma cruzi</span> infection and pathogenesis of Chagas disease" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "F.S. Machado" 1 => "W.O. Dutra" 2 => "L. Esper" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00281-012-0351-7" "Revista" => array:6 [ "tituloSerie" => "Semin Immunopathol" "fecha" => "2012" "volumen" => "34" "paginaInicial" => "753" "paginaFinal" => "770" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23076807" "web" => "Medline" ] ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0345" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Innate immune responses and antioxidant/oxidant imbalance are major determinants of human Chagas Disease" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "M. Dhiman" 1 => "Y.A. Coronado" 2 => "C.K. Vallejo" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "PLoS Negl Trop Dis" "fecha" => "2013" "volumen" => "7" "paginaInicial" => "1" "paginaFinal" => "11" ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0350" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Antimicrobial reactive oxygen and nitrogen species: concepts and controversies" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "F.C. Fang" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Nature" "fecha" => "2004" "volumen" => "2" "paginaInicial" => "820" "paginaFinal" => "832" ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0355" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Oxidative stress in Chagas disease" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "S. Gupta" 1 => "J.J. Wen" 2 => "N.J. Garg" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Interdiscip Perspect Infect Dis" "fecha" => "2009" "volumen" => "1" "paginaInicial" => "1" "paginaFinal" => "8" ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0360" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Increased susceptibility of Stat4-deficient and enhanced resistance in Stat6-deficient mice to infection with <span class="elsevierStyleItalic">Trypanosoma cruzi</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R.L. Tarleton" 1 => "M.J. Grusby" 2 => "L. Zhang" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Immunol" "fecha" => "2000" "volumen" => "165" "paginaInicial" => "1520" "paginaFinal" => "1525" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10903759" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0365" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The endless race between <span class="elsevierStyleItalic">Trypanosoma cruzi</span> and host immunity: lessons for and beyond Chagas disease" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "C. Junqueira" 1 => "B. Caetano" 2 => "D.C. Bartholomeu" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Expert Rev Mol Med" "fecha" => "2010" "volumen" => "12" "paginaInicial" => "1" "paginaFinal" => "23" ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0370" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Chagas’ disease: an update on immune mechanisms and therapeutic strategies" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "S.B. Boscardin" 1 => "A.C. Troccoli-Torrecilhas" 2 => "R. Manarin" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J Cell Mol Med" "fecha" => "2010" "volumen" => "14" "paginaInicial" => "1273" "paginaFinal" => "1384" ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0375" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Immune evasion strategies of <span class="elsevierStyleItalic">Trypanosoma cruzi</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A.F. Nardy" 1 => "C.G. Freire-de-Lima" 2 => "A. Morrot" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J Immunol Res" "fecha" => "2015" "volumen" => "178947" "paginaInicial" => "1" "paginaFinal" => "7" ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0380" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "Asociación Colombiana de Infectología" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2007" "paginaInicial" => "1" "paginaFinal" => "48" ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0385" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Guías clínicas de la enfermedad de Chagas: Parte II. Enfermedad de Chagas en el adulto, la infancia y adolescencia" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "W. Apt" 1 => "I. Heitmann" 2 => "I. Jercic" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Rev Chil Infectol" "fecha" => "2008" "volumen" => "25" "paginaInicial" => "194" "paginaFinal" => "199" ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0390" "etiqueta" => "32" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "colaboracion" => "Ministerio de Salud" "etal" => false ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2011" "paginaInicial" => "1" "paginaFinal" => "38" ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0395" "etiqueta" => "33" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Guías clínicas de la enfermedad de Chagas: Parte IV. Enfermedad de Chagas en pacientes inmunocomprometidos" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "W. Apt" 1 => "I. Heitmann" 2 => "I. Jercic" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Rev Chil Infectol" "fecha" => "2008" "volumen" => "25" "paginaInicial" => "289" "paginaFinal" => "292" ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0400" "etiqueta" => "34" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Primer consenso colombiano sobre Chagas congénito y orientacio¿n cli¿nica a mujeres en edad fértil con diagno¿stico de Chagas" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "Z.M. Cucunubá" 1 => "C.A. Valencia-Hernández" 2 => "C.J. Puerta" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Infectio" "fecha" => "2014" "volumen" => "3" "paginaInicial" => "1" "paginaFinal" => "16" ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0405" "etiqueta" => "35" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Kirchho L. Chagas Disease American Trypanosomiasis. www.medscape.com. Available at: <a id="intr0010" class="elsevierStyleInterRef" href="http://emedicine.medscape.com/article/214581-overview">http://emedicine.medscape.com/article/214581-overview</a> [Updated 10 November 2014, accessed January 2016]" ] ] ] 35 => array:3 [ "identificador" => "bib0410" "etiqueta" => "36" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Chagas disease" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "C. Bern" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Engl J Med" "fecha" => "2015" "volumen" => "373" "paginaInicial" => "456" "paginaFinal" => "466" ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0415" "etiqueta" => "37" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Guías clínicas de la enfermedad de Chagas: Parte V" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "W. Apt" 1 => "I. Heitmann" 2 => "I. Jercic" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Rev Chil Infect" "fecha" => "2008" "volumen" => "25" "paginaInicial" => "379" "paginaFinal" => "383" ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0420" "etiqueta" => "38" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Estandarización de la técnica de western blot para el diagnóstico específico de la enfermedad de Chagas utilizando antígenos de excreción-secreción de los epimastigotes de <span class="elsevierStyleItalic">Trypanosoma cruzi</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "E. Hermes" 1 => "C. Jara" 2 => "K. Davelois" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Rev Peru Med Exp Salud Pública" "fecha" => "2014" "volumen" => "31" "paginaInicial" => "644" "paginaFinal" => "651" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25597713" "web" => "Medline" ] ] ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0425" "etiqueta" => "39" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Socio-cultural aspects of Chagas Disease: a systematic review of qualitative research" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "L. Ventura" 1 => "M. Roura" 2 => "C. Pell" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "PLoS Negl Trop Dis" "fecha" => "2013" "volumen" => "7" "paginaInicial" => "1" "paginaFinal" => "9" ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0430" "etiqueta" => "40" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Enfermedad de Chagas: una enfermedad olvidada" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "A. Carabarin-Lima" 1 => "M.C. González-Vázquez" 2 => "L. Baylon-Pacheco" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Elementos" "fecha" => "2011" "volumen" => "84" "paginaInicial" => "5" "paginaFinal" => "11" ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0435" "etiqueta" => "41" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Modelo OMS de información sobre prescripción de medicamentos: Medicamentos utilizados en las enfermedades parasitarias – Segunda edición; app.who.int. Available at: <a id="intr0015" class="elsevierStyleInterRef" href="http://apps.who.int/medicinedocs/es/d/Jh2924s/2.11.1.html">http://apps.who.int/medicinedocs/es/d/Jh2924s/2.11.1.html</a> [Updated 1996, accessed 12.08.16]." ] ] ] 41 => array:3 [ "identificador" => "bib0440" "etiqueta" => "42" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Prophylactic and therapeutic DNA vaccines against Chagas disease" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "M. Arce-Fonseca" 1 => "M. Ríos-Castro" 2 => "S.C. Carrillo-Sánchez" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/s13071-014-0608-1" "Revista" => array:6 [ "tituloSerie" => "Parasites Vectors" "fecha" => "2015" "volumen" => "8" "paginaInicial" => "1" "paginaFinal" => "7" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25561160" "web" => "Medline" ] ] ] ] ] ] ] ] 42 => array:3 [ "identificador" => "bib0445" "etiqueta" => "43" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Experimental vaccines against Chagas Disease: a journey through history" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "O. Rodríguez-Morales" 1 => "V. Monteón-Padilla" 2 => "S.C. Carrillo-Sánchez" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J Immunol Res" "fecha" => "2015" "volumen" => "1" "paginaInicial" => "1" "paginaFinal" => "8" ] ] ] ] ] ] 43 => array:3 [ "identificador" => "bib0450" "etiqueta" => "44" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Status of vaccine research and development of vaccines for Chagas disease" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "C.M. Beaumier" 1 => "P.M. Gillespie" 2 => "U. Strych" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.vaccine.2016.03.074" "Revista" => array:6 [ "tituloSerie" => "Vaccine" "fecha" => "2016" "volumen" => "34" "paginaInicial" => "2996" "paginaFinal" => "3000" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27026146" "web" => "Medline" ] ] ] ] ] ] ] ] 44 => array:3 [ "identificador" => "bib0455" "etiqueta" => "45" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Guías clínicas de la enfermedad de Chagas: Parte I. Introducción y epidemiología" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "W. Apt" 1 => "I. Heitmann" 2 => "I. Jercic" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Rev Chil Infectol" "fecha" => "2008" "volumen" => "25" "paginaInicial" => "189" "paginaFinal" => "193" ] ] ] ] ] ] 45 => array:3 [ "identificador" => "bib0460" "etiqueta" => "46" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Nuevos avances en el desarrollo del tratamiento etiolo¿gico de la enfermedad de Chagas" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "J.A. Urbina" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:4 [ "titulo" => "Enfermedad de Chagas" "paginaInicial" => "165" "paginaFinal" => "177" "serieFecha" => "2007" ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack357574" "titulo" => "Acknowledgments" "texto" => "<p id="par0495" class="elsevierStylePara elsevierViewall">We thank Ana María Fernández Presas, Blanca Esther Blancas Luciano, Roxana Haydee Rodríguez Barrera, and Rosmary Lizbeth Toloza Medina for the technical support.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/01851063/0000008100000003/v1_201807150508/S0185106316301123/v1_201807150508/en/main.assets" "Apartado" => array:4 [ "identificador" => "46400" "tipo" => "SECCION" "es" => array:2 [ "titulo" => "Review articles" "idiomaDefecto" => true ] "idiomaDefecto" => "es" ] "PDF" => "https://static.elsevier.es/multimedia/01851063/0000008100000003/v1_201807150508/S0185106316301123/v1_201807150508/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0185106316301123?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 19 | 2 | 21 |
2024 October | 203 | 39 | 242 |
2024 September | 257 | 45 | 302 |
2024 August | 149 | 32 | 181 |
2024 July | 152 | 30 | 182 |
2024 June | 182 | 28 | 210 |
2024 May | 143 | 20 | 163 |
2024 April | 174 | 26 | 200 |
2024 March | 141 | 32 | 173 |
2024 February | 118 | 13 | 131 |
2024 January | 166 | 22 | 188 |
2023 December | 110 | 11 | 121 |
2023 November | 157 | 29 | 186 |
2023 October | 145 | 49 | 194 |
2023 September | 116 | 18 | 134 |
2023 August | 149 | 21 | 170 |
2023 July | 164 | 21 | 185 |
2023 June | 205 | 57 | 262 |
2023 May | 259 | 33 | 292 |
2023 April | 182 | 32 | 214 |
2023 March | 202 | 20 | 222 |
2023 February | 131 | 16 | 147 |
2023 January | 143 | 12 | 155 |
2022 December | 117 | 6 | 123 |
2022 November | 156 | 35 | 191 |
2022 October | 104 | 20 | 124 |
2022 September | 117 | 17 | 134 |
2022 August | 87 | 13 | 100 |
2022 July | 90 | 23 | 113 |
2022 June | 75 | 24 | 99 |
2022 May | 113 | 30 | 143 |
2022 April | 118 | 14 | 132 |
2022 March | 105 | 31 | 136 |
2022 February | 102 | 24 | 126 |
2022 January | 81 | 16 | 97 |
2021 December | 65 | 19 | 84 |
2021 November | 99 | 32 | 131 |
2021 October | 169 | 22 | 191 |
2021 September | 93 | 30 | 123 |
2021 August | 314 | 24 | 338 |
2021 July | 89 | 15 | 104 |
2021 June | 77 | 23 | 100 |
2021 May | 126 | 23 | 149 |
2021 April | 151 | 28 | 179 |
2021 March | 102 | 27 | 129 |
2021 February | 45 | 12 | 57 |
2021 January | 65 | 19 | 84 |
2020 December | 57 | 5 | 62 |
2020 November | 76 | 12 | 88 |
2020 October | 39 | 18 | 57 |
2020 September | 54 | 26 | 80 |
2020 August | 53 | 18 | 71 |
2020 July | 56 | 14 | 70 |
2020 June | 52 | 19 | 71 |
2020 May | 60 | 18 | 78 |
2020 April | 87 | 15 | 102 |
2020 March | 73 | 18 | 91 |
2020 February | 66 | 15 | 81 |
2020 January | 60 | 8 | 68 |
2019 December | 38 | 6 | 44 |
2019 November | 35 | 13 | 48 |
2019 October | 58 | 17 | 75 |
2019 September | 29 | 15 | 44 |
2019 August | 17 | 4 | 21 |
2019 July | 26 | 15 | 41 |
2019 June | 41 | 15 | 56 |
2019 May | 103 | 46 | 149 |
2019 April | 55 | 29 | 84 |
2019 March | 18 | 8 | 26 |
2019 February | 36 | 8 | 44 |
2019 January | 19 | 7 | 26 |
2018 December | 25 | 3 | 28 |
2018 November | 30 | 1 | 31 |
2018 October | 19 | 7 | 26 |
2018 September | 77 | 16 | 93 |
2018 August | 48 | 16 | 64 |
2018 July | 25 | 5 | 30 |
2018 June | 0 | 7 | 7 |
2018 May | 1 | 7 | 8 |
2018 April | 1 | 1 | 2 |
2018 March | 1 | 2 | 3 |
2018 February | 1 | 5 | 6 |
2018 January | 1 | 6 | 7 |
2017 December | 4 | 3 | 7 |
2017 November | 2 | 1 | 3 |
2017 October | 7 | 2 | 9 |
2017 September | 8 | 2 | 10 |
2017 August | 3 | 5 | 8 |
2017 July | 3 | 2 | 5 |
2017 June | 0 | 2 | 2 |
2017 May | 0 | 7 | 7 |
2017 April | 2 | 7 | 9 |
2017 March | 8 | 5 | 13 |
2017 February | 4 | 12 | 16 |
2017 January | 8 | 2 | 10 |
2016 December | 5 | 10 | 15 |
2016 November | 1 | 16 | 17 |