covid
Buscar en
Revista Portuguesa de Estomatologia, Medicina Dentária e Cirurgia Maxilofacial
Toda la web
Inicio Revista Portuguesa de Estomatologia, Medicina Dentária e Cirurgia Maxilofacial Influência do Tipo de Fio Ortodôntico e da Angulação de Segunda Ordem sobre ...
Journal Information
Vol. 48. Issue 1.
Pages 5-14 (January - March 2007)
Share
Share
Download PDF
More article options
Vol. 48. Issue 1.
Pages 5-14 (January - March 2007)
Investigação
Open Access
Influência do Tipo de Fio Ortodôntico e da Angulação de Segunda Ordem sobre as Forças de Fricção
Visits
4223
Natascha Fernandes*, Jorge Leitão**, Luis Jardim***
* Médica Dentista, Assistente Convidada de Ortodontia na Faculdade de Medicina Dentária da Universidade de Lisboa
** Médico Estomatologista, Professor Catedrático, Regente de Biomateriais na Faculdade de Medicina Dentária da Universidade de Lisboa
*** Médico Dentista Especialista em Ortodontia, Professor Catedrático, Regente de Ortodontia na Faculdade de Medicina Dentária da Universidade de Lisboa
This item has received

Under a Creative Commons license
Article information
Resumo

Este estudo avaliou as fricções estática e cinética geradas por quatro tipos de arcos ortodônticos: aço inoxidável (Stainless Steel, Ormco), β-titânio (TMA, Ormco), níquel-titânio (Ni-Ti, Ormco) e β-titânio com implantação de iões (Low Friction TMA), variando a angulação de segunda ordem entre o bracket e o fio (0°, 4° e 8°). Os arcos, foram movimentados através de brackets de aço inoxidável (Mini-Diamond, Ormco) com ranhura de 0.022 polegadas. As forças de fricção foram medidas usando uma máquina universal de testes Instrom. Os dados foram submetidos a uma análise de variância factorial (3 × 4 ANOVA) seguida da comparação de médias segundo o método de Student Neuman-Keuls.

A fricção foi significativamente influenciada (p<0.0001) pelo tipo de arco ortodôntico e pela angulação. Independentemente do arco, as forças de fricção aumentaram com a angulação. Na angulação de 0°, os arcos Stainless Steel produziram valores significativamente inferiores de fricção estática em comparação com os arcos TMA. Na angulação de 4°, os arcos Ni-Ti e TMA Low Friction produziram valores significativamente inferiores de fricção. Na angulação de 8°, a fricção mais baixa foi produzida pelos arcos Ni-Ti.

Em conclusão: 1) As forças de fricção aumentaram com a angulação de segunda ordem. 2) Os arcos de aço inoxidável reduziram a fricção estática na angulação de 0°. 3) Nas angulações mais altas, os arcos de níquel titânio diminuem as forças de fricção 4) O processo de implantação de iões é um processo eficaz de reduzir a fricção.

Palavras-Chave:
Fricção
Fio ortodôntico
Implantação de iões
Angulação
Abstract

This study evaluated static and kinetic friction generated by four types of orthodontic arch wires: Stainless steel (Stainless Steel, Ormco), β-Titanium (TMA, Ormco), Nickel Titanium (Ni-Ti, Ormco), and ion implanted β- Titanium (TMA Low friction, Ormco) at three different second order angulations (0°, 4° and 8). The arch wires (0.019 × 0.025 inch) were drawn through 0.022-in slot stainless steel brackets (Mini-Diamond, Ormco) fixed on acrylic cylinders mounted on a specially designed apparatus. Friction was measured using an Instrom universal testing machine. Data was analysed by a 3 × 4 factorial Anova followed by Student Neuman-Keuls comparison of means. Static and kinetic friction were significantly affected (p<0.0001) by both second order angulation and arch wire type. With increasing angulation, friction increased for all arch wire types. At 0° angulation, Stainless Steel arch wires produced significantly lower static friction than the TMA arch wires. At the 4° angulation, both the TMA Low Friction and Ni-Ti arch wires produced lower levels of static and kinetic friction than the Stainless Steel and TMA arch wires. At the 8° angulation, Ni-Ti arch wires produced the lowest values of static and kinetic friction.

Conclusion

(1) When second-order angulation was increased, friction increased for all bracket types. (2) Stainless steel wires reduced static friction only in the passive state. (3) The nickel titanium arch wires produced lower levels of friction at higher angulations. (4) Ion implantation of arch wires is an effective way of reducing friction

Key-words:
Friction
Archwire
Ion implantation
Angulation
Full text is only aviable in PDF
Bibliografia
[1.]
L.C. Articolo, R.P. Kusy.
Influence of angulation on the resistance to sliding in fixed appliances.
Am J Orthod Dentofacial Orthop, 115 (1999), pp. 39-51
[2.]
B. Kang, S. Baek, J. Mah, W. Yang.
Three dimensional relationship between the critical contact angle and the torque angle.
Am J Orthod Dentofacial Orthop, 123 (2003), pp. 64-73
[3.]
R.P. Kusy, J.Q. Whitley.
Effects of surface roughness on the coefficients of friction in model orthodontic systems.
J Biomech, 23 (1990), pp. 913-925
[4.]
C. Nishio, A.F. da Motta, C.N. Elias, J.N. Mucha.
In vitro evaluation of frictional forces between archwires and ceramic brackets.
Am J Orthod Dentofacial Orthop, 125 (2004), pp. 56-64
[5.]
V. Cacciafesta, M.F. Sfondrini, A. Scribante, C. Klersy, F. Auricchio.
Evaluation of friction of conventional and metal-insert ceramic brackets in various bracket-archwire combinations.
Am J Orthod Dentofacial Orthop, 124 (2003), pp. 403-409
[6.]
J.R. Bednar, G.W. Gruendeman, J.L. Sandrik.
A comparative study of frictional forces between orthodontic brackets and arch wires.
Am J Orthod Dentofacial Orthop, 100 (1991), pp. 513-522
[7.]
S. Kapila, R. Sachdeva.
Mechanical properties and clinical applications of orthodontic wires.
Am J Orthod Dentofacial Orthop, 96 (1989), pp. 100-109
[8.]
P.E. Rossouw.
Friction: an overview.
Semin Orthod, 9 (2003), pp. 218-222
[9.]
L.C. Articolo, K. Kusy, C.R. Saunders, R.P. Kusy.
Influence of ceramic and stainless steel brackets on the notching of archwires during clinical treatment.
Eur J Orthod, 22 (2000), pp. 409-425
[10.]
R.P. Kusy, J.Q. Whitley.
Influence of archwire and bracket dimensions on sliding mechanics: derivations and determinations of the critical contact angles for binding.
Eur J Orthod, 21 (1999), pp. 199-208
[11.]
R.P. Kusy.
Ongoing innovations in biomechanics and materials for the new millenium.
[12.]
R.P. Kusy, P.W. O’Grady.
Evaluation of titanium brackets for orthodontic treatment: part II.
The active configuration. Am J Orthod Dentofacial Orthop, 118 (2000), pp. 675-684
[13.]
B.S. Thortenson, R.P. Kusy.
Effects of ligation type and method on the resistance to sliding of novel orthodontic brackets with second order angulation in the dry and wet states.
[14.]
S.W. Zufall, R.P. Kusy.
Sliding mechanics of coated composite wires and the development of an engineering model for binding.
[15.]
R.P. Kusy, J.Q. Whitley.
Frictional resistance of metal-lined ceramic brackets versus conventional stainless steel bracketsand development of 3D friction maps.
[16.]
B.S. Thortenson, R.P. Kusy.
Effect of archwire size and material on the resistance to sliding of self ligating brackets with second order angulation in the dry state.
Am J Orthod Dentofacial Orthop, 122 (2002), pp. 295-305
[17.]
D. Drescher, C. Bourauel, H.A. Schumacher.
Frictional forces between bracket and arch wire.
Am J Orthod Dentofacial Orthop, 96 (1989), pp. 397-404
[18.]
C.A. Frank, R.J. Nikolai.
A comparative study of frictional resistances between orthodontic bracket and arch wire.
Am J Orthod, 78 (1980), pp. 593-609
[19.]
K. Mendes, P.E. Rossouw.
Friction: validation of manufacturer's claim.
Semin Orthod, 9 (2003), pp. 236-250
[20.]
D.J. Michelberger, R.L. Eadie, M.G. Faulkner, G.E. Glover, N.G. Prasad, P.W. Major.
The friction and wear patterns of orthodontic brackets and arch wires in the dry state.
Am J Orthod Dentofacial Orthop, 118 (2000), pp. 662-674
[21.]
D. O’Reilly, P.A. Dowling, L. Lagerstrom, M.L. Swartz.
An ex-vivo investigation into the effect of bracket displacement on the resistance to sliding.
Br J Orthod, 26 (1999), pp. 219-227
[22.]
K. Yamaguchi, R.S. Nanda, N. Morimoto, Y. Oda.
A study of force application, amount of retarding force, and bracket width in sliding mechanics.
Am J Orthod Dentofacial Orthop, 109 (1996), pp. 50-56
[23.]
V. Cacciafesta, M.F. Sfondrini, A. Ricciardi, A. Scribante, C. Klersy, F. Aurrichio.
Evaluation of friction of stainless steel and esthetic self-ligating brackets in various bracket/arch wire combinations.
Am J Orthod Dentofacial Orthop, 124 (2003), pp. 395-402
[24.]
L. Pizzoni, G. Ravnholt, B. Melsen.
Frictional forces related to self-ligating brackets.
Eur J Orthod, 20 (1998), pp. 283-291
[25.]
R.R. Prososki, M.D. Bagby, L.C. Erickson.
Static frictional force and surface roughness of nickel-titanium arch wires.
Am J Orthod Dentofacial Orthop, 100 (1991), pp. 341-348
[26.]
M. Redlich, Y. Mayer, D. Harari, I. Lewinstein.
In vitro study of frictional forces during sliding mechanics of “reducedfriction” brackets.
Am J Orthod Dentofacial Orthop, 124 (2003), pp. 69-73
[27.]
N.G. Taylor, K. Ison.
Frictional resistance between orthodontic brackets and archwires in the buccal segments.
[28.]
D.J. De Franco, R.E. Spiller Jr., J.A. von Fraunhofer.
Frictional resistances using Teflon-coated ligatures with various bracketarchwire combinations.
[29.]
P.V. Angolkar, S. Kapila, M.G. Duncanson Jr., R.S. Nanda.
Evaluation of friction between ceramic brackets and orthodontic wires of four alloys.
Am J Orthod Dentofacial Orthop, 98 (1990), pp. 499-506
[30.]
E. Bazakidou, R.S. Nanda, M.G. Duncanson Jr., P. Sinha.
Evaluation of sfrictional resistance in esthetic brackets.
Am J Orthod Dentofacial Orthop, 112 (1997), pp. 138-144
[31.]
J.A. Dickson, S.P. Jones, E.H. Davies.
A comparison of the frictional characteristics of five initial alignment wires and stainless steel brackets at three bracket to wire angulations--an in vitro study.
Br J Orthod, 21 (1994), pp. 15-22
[32.]
A. Downing, J.F. McCabe, P.H. Gordon.
The effect of artificial saliva on the frictional forces between orthodontic brackets and archwires.
Br J Orthod, 22 (1995), pp. 41-46
[33.]
A. Downing, J. McCabe, P. Gordon.
A study of frictional forces between orthodontic brackets and archwires.
Br J Orthod, 21 (1994), pp. 349-357
[34.]
L.D. Garner, W.W. Allai, B.K. Moore.
A comparison of frictional forces during simulated canine retraction of a continuous edgewise arch wire.
Am J Orthod Dentofacial Orthop, 90 (1986), pp. 199-203
[35.]
B.P. Loftus, J. Artun, J.I. Nicholls, T.A. Alonzo, J.A. Stoner.
Evaluation of friction during sliding tooth movement in various bracket-arch wire combinations.
Am J Orthod Dentofacial Orthop, 116 (1999), pp. 336-345
[36.]
R.P. Kusy, J.Q. Whitley.
Coefficients of friction for arch wires in stainless steel and polycrystalline alumina bracket slots. I. The dry state.
Am J Orthod Dentofacial Orthop, 98 (1990), pp. 300-312
[37.]
R.P. Kusy, J.Q. Whitley, M.J. Prewitt.
Comparison of the frictional coefficients for selected archwire-bracket slot combinations in the dry and wet states.
[38.]
D.C. Tidy.
Frictional forces in fixed appliances.
Am J Orthod Dentofacial Orthop, 96 (1989), pp. 249-254
[39.]
M. Tselepis, P. Brockhurst, V.C. West.
The dynamic frictional resistance between orthodontic brackets and arch wires.
Am J Orthod Dentofacial Orthop, 106 (1994), pp. 131-138
[40.]
B.P. Loftus, J. Artun, J.I. Nicholls, T.A. Alonzo, J.A. Stoner.
Evaluation of friction during sliding tooth movements in various bracket-archwire combinations.
Am J Orthod Dentofacial Orthop, 116 (1999), pp. 336-345
[41.]
L. Peterson, R. Spencer, G. Andreasen.
A comparison of friction resistance for Nitinol and stainless steel wire in edgewise brackets.
Quintessence Int, 13 (1982), pp. 563-571
[42.]
C.J. Burstone, F. Farzin-Nia.
Production of low-friction and colored TMA by ion implantation.
J Clin Orthod, 29 (1995), pp. 453-461
[43.]
F.J. Gil, E. Solano, A. Campos, F. Boccio, I. Saez, M.V. Alfonso, J.A. Planell.
Improvement of the friction behaviour of NiTi orthodontic archwires by nitrogen diffusion.
Biomed Mater Eng, 8 (1998), pp. 335-342
[44.]
R.P. Kusy, E.J. Tobin, J.Q. Whitley, P. Sioshani.
Frictional coefficients of ion implanted alumina against ion-implanted betatitanium in the low load, low velocity, single pass regime.
Dent Mater, 8 (1992), pp. 167-172
[45.]
R. Ryan, G. Walker, K. Freeman, G.J. Cisneros.
The effects of ion implantation on rate of tooth movement: an in vitro model.
Am J Orthod Dentofacial Orthop, 112 (1997), pp. 64-68
[46.]
N. Fernandes, J. Leitão, L. Jardim.
Influência do tipo do bracket e da angulação de segunda ordem sobre as forças de fricção.
Rev Port Estomatol Cir Maxilofac, 46 (2005), pp. 133-143
[47.]
C. Bourauel, T. Fries, D. Drescher, R. Plietsch.
Surface roughness of orthodontic wires via atomic force microscopy, laser specular reflectance, and profilometry.
Eur J Orthod, 20 (1998), pp. 79-92
[48.]
D.V. Smith, P.E. Rossouw, P. Watson.
Quantifies simulation of canine retraction: evaluation of frictional resistance.
Semin Orthod, 9 (2003), pp. 262-280
[49.]
R.P. Kusy, J.Q. Whitley.
Effects of surface roughness on the coefficients of friction in model orthodontic systems.
J Biomech, 23 (1990), pp. 913-925
[50.]
D.H. Pratten, K. Popli, N. Germane, J.C. Gunsolley.
Frictional resistance of ceramic and stainless steel orthodontic brackets.
Am J Orthod Dentofacial Orthop, 98 (1990), pp. 398-403
[51.]
R.P. Kusy, J.Q. Whitley, M.J. Mayhew, J.E. Buckthal.
Surface roughness of orthodontic archwires via laser spectroscopy.
[52.]
C.R. Saunders, R.P. Kusy.
Surface topography and frictional characteristics of ceramic brackets.
Am J Orthod Dentofacial Orthop, 106 (1994), pp. 76-87
[53.]
T.D. Creekmore.
The importance of interbracket width in orthodontic tooth movement.
J Clin Orthod, 10 (1976), pp. 530-534
[54.]
J.G. Stannard, J.M. Gau, M.A. Hanna.
Comparative friction of orthodontic wires under dry and wet conditions.
Am J Orthod, 89 (1986), pp. 485-491

(Fernandes N, Leitão J, Jardim L. Influência do Tipo de Fio Ortodôntico e da Angulação de Segunda Ordem sobre as Forças de Fricção. Rev Port Estomatol Cir Maxilofac 2007;48:5–14)

Copyright © 2007. Sociedade Portuguesa de Estomatologia e Medicina Dentária
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos