was read the article
array:23 [ "pii" => "S2445146023000584" "issn" => "24451460" "doi" => "10.1016/j.vacune.2023.10.005" "estado" => "S300" "fechaPublicacion" => "2023-10-01" "aid" => "292" "copyright" => "Elsevier España, S.L.U.. All rights reserved" "copyrightAnyo" => "2023" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Vacunas. 2023;24:278-90" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "itemSiguiente" => array:18 [ "pii" => "S2445146023000596" "issn" => "24451460" "doi" => "10.1016/j.vacune.2023.05.002" "estado" => "S300" "fechaPublicacion" => "2023-10-01" "aid" => "296" "copyright" => "Elsevier España, S.L.U." "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Vacunas. 2023;24:291-7" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:11 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Adverse events following COVID-19 vaccination among pregnant women attending primary health centers: An active-surveillance study" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "291" "paginaFinal" => "297" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Narayana Goruntla, Basappa Karisetty, Nandini Nandini, Bharadwaj Bhupasamudram, Himaja Reddy Gangireddy, Kasturi Vishwanathasetty Veerabhadrappa, Joseph Obiezu Chukwujekwu Ezeonwumelu, Vishnuvandana Bandaru" "autores" => array:8 [ 0 => array:2 [ "nombre" => "Narayana" "apellidos" => "Goruntla" ] 1 => array:2 [ "nombre" => "Basappa" "apellidos" => "Karisetty" ] 2 => array:2 [ "nombre" => "Nandini" "apellidos" => "Nandini" ] 3 => array:2 [ "nombre" => "Bharadwaj" "apellidos" => "Bhupasamudram" ] 4 => array:2 [ "nombre" => "Himaja Reddy" "apellidos" => "Gangireddy" ] 5 => array:2 [ "nombre" => "Kasturi Vishwanathasetty" "apellidos" => "Veerabhadrappa" ] 6 => array:2 [ "nombre" => "Joseph Obiezu Chukwujekwu" "apellidos" => "Ezeonwumelu" ] 7 => array:2 [ "nombre" => "Vishnuvandana" "apellidos" => "Bandaru" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2445146023000596?idApp=UINPBA00004N" "url" => "/24451460/0000002400000004/v2_202401230726/S2445146023000596/v2_202401230726/en/main.assets" ] "itemAnterior" => array:18 [ "pii" => "S2445146023000572" "issn" => "24451460" "doi" => "10.1016/j.vacune.2023.04.008" "estado" => "S300" "fechaPublicacion" => "2023-10-01" "aid" => "290" "copyright" => "Elsevier España, S.L.U." "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Vacunas. 2023;24:273-7" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "The polymorphisms of TNF-α related-gene and antibody production following third dose of COVID-19 vaccination: A pilot study" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "273" "paginaFinal" => "277" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Los polimorfismos del gen relacionado con el TNF-α y la producción de anticuerpos después de la tercera dosis de la vacuna contra el COVID-19: Un estudio piloto" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Phey Liana, Zen Hafy, Soilia Fertilita, Ella Amalia, Veny Larasati, Tungki Pratama Umar" "autores" => array:6 [ 0 => array:2 [ "nombre" => "Phey" "apellidos" => "Liana" ] 1 => array:2 [ "nombre" => "Zen" "apellidos" => "Hafy" ] 2 => array:2 [ "nombre" => "Soilia" "apellidos" => "Fertilita" ] 3 => array:2 [ "nombre" => "Ella" "apellidos" => "Amalia" ] 4 => array:2 [ "nombre" => "Veny" "apellidos" => "Larasati" ] 5 => array:2 [ "nombre" => "Tungki Pratama" "apellidos" => "Umar" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2445146023000572?idApp=UINPBA00004N" "url" => "/24451460/0000002400000004/v2_202401230726/S2445146023000572/v2_202401230726/en/main.assets" ] "en" => array:19 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Impact of vaccination on the entire population and dose-response relation of COVID-19" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "278" "paginaFinal" => "290" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Abdul Malek, Ashabul Hoque" "autores" => array:2 [ 0 => array:4 [ "nombre" => "Abdul" "apellidos" => "Malek" "email" => array:1 [ 0 => "malekbio@gmail.com" ] "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cr0005" ] ] ] 1 => array:2 [ "nombre" => "Ashabul" "apellidos" => "Hoque" ] ] "afiliaciones" => array:1 [ 0 => array:2 [ "entidad" => "Department of Mathematics, University of Rajshahi, Rajshahi 6205, Bangladesh" "identificador" => "af0005" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cr0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Impacto de la vacunación en toda la población y relación dosis-respuesta del COVID-19" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "f0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1665 "Ancho" => 2758 "Tamanyo" => 221719 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "al0005" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="sp0005" class="elsevierStyleSimplePara elsevierViewall">Schematic diagram of the compartmental model describing the transmission of the COVID-19 pandemic taking into account the vaccination program. Variables and parameters are defined in <a class="elsevierStyleCrossRef" href="#t0010">Table 2</a>.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="s0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0065">Introduction</span><p id="p0005" class="elsevierStylePara elsevierViewall">Although the virus COVID-19 was first identified in Wuhan city, China<a class="elsevierStyleCrossRef" href="#bb0005"><span class="elsevierStyleSup">1</span></a>, however, it started taking a heavy toll on Europe, the United States, Brazil, and India and turned into an unexpected crisis in public health in all nooks and corners of the world. Early detection, isolation, tracing close contact, and treating mild cases are effective to control the outbreak of this disease and the proper interventions have a positive impact in delaying the epidemic peak and reducing the final epidemic size.<a class="elsevierStyleCrossRef" href="#bb0010"><span class="elsevierStyleSup">2</span></a> Due to uncertainties of the disease, investigators have used several mathematical models considering vaccination impact to forecast the characteristics of transmission parameters and controling rate.</p><p id="p0010" class="elsevierStylePara elsevierViewall">Many researchers developed a variety of epidemic models under the circumstance of limited resources and discussed the outbreak, and schemed the path of transmission in a different situation.<a class="elsevierStyleCrossRefs" href="#bb0015"><span class="elsevierStyleSup">3–8</span></a> Among the different models, a time-dependent SIR model and a standard SEIR model for transmission of COVID-19 and estimated a time-dependent reproduction number was developed by Hong and Li<a class="elsevierStyleCrossRef" href="#bb0030"><span class="elsevierStyleSup">6</span></a> and Buckman et al.<a class="elsevierStyleCrossRef" href="#bb0035"><span class="elsevierStyleSup">7</span></a>, respectively. They suggested that social distancing during the early stages of the epidemic might lower the effective reproduction number each day and mitigate the spread of COVID-19. A model named SEIATR which was developed to estimate the epidemic peak and time-dependent reproduction number of COVID-19 in South Asian Countries (India, Pakistan, Bangladesh, and Afghanistan), suggested that the asymptomatic population played an important role in the trends of the pandemic.<a class="elsevierStyleCrossRef" href="#bb0040"><span class="elsevierStyleSup">8</span></a> An asymptomatic individual might have a major influence on the transmitting as it affects the respiratory system.<a class="elsevierStyleCrossRef" href="#bb0045"><span class="elsevierStyleSup">9</span></a> Time-dependent disease reproduction number can serve as a metric for timely evaluating effects of mass health policies.<a class="elsevierStyleCrossRef" href="#bb0030"><span class="elsevierStyleSup">6</span></a> The literature review shows that the dynamics of COVID-19 through the entire population such as stability analysis, epidemic size, and epidemic spread based on basic reproduction number were well investigated. However, the performance of vaccine efficiency to human immunity against COVID-19 are not well investigated yet.</p><p id="p0015" class="elsevierStylePara elsevierViewall">COVID-19 vaccination started in December 2020 and upto date, several vaccines, such as Pfizer BioNTech, Moderna, Oxford-AstraZeneca, Sinovac, Spotnic V, Jonson & Jonson, etc has been developed. It has been recognized that the COVID-19 vaccines are relatively safe,<a class="elsevierStyleCrossRef" href="#bb0050"><span class="elsevierStyleSup">10</span></a> this finding is not widely available when vaccines are freshly distributed. Several studies already carried out to explore the effective vaccination strategies by using a mathematical model.<a class="elsevierStyleCrossRefs" href="#bb0055"><span class="elsevierStyleSup">11–16</span></a></p><p id="p0020" class="elsevierStylePara elsevierViewall">Numerical simulations indicate that COVID-19 can be controlled in the community with the implementation of vaccination and treatment.<a class="elsevierStyleCrossRef" href="#bb0080"><span class="elsevierStyleSup">16</span></a> The model results showed that random vaccination was efficient in reducing the overall number of infected individuals.<a class="elsevierStyleCrossRef" href="#bb0085"><span class="elsevierStyleSup">17</span></a> Looking at vaccine effectiveness scenario modeling showed that a vaccine with more than 50% effectiveness will lead to pandemic control, provided that a high percentage of the population is optimally vaccinated.<a class="elsevierStyleCrossRef" href="#bb0090"><span class="elsevierStyleSup">18</span></a></p><p id="p0025" class="elsevierStylePara elsevierViewall">Furthermore, dose-response analysis is essential for the risk assessment paradigm, which describes the relationship between a certain dose of a pathogen and the probability of infection. Conceptual models of dose-response functions differ between microbes and chemical agents.<a class="elsevierStyleCrossRef" href="#bb0095"><span class="elsevierStyleSup">19</span></a> The nature of data and the use of dose-response functions in risk assessment are similar. A better understanding of the vaccination program and dose-response relation-related parameters is essential to evaluate the effectiveness of fractional dose vaccination on disease control at the population level. A mathematical expression for the dose-response relation was established that described the probability of infection after contact and determined the success of pathogen establishment into host cells, and the shape of the observed dose.<a class="elsevierStyleCrossRef" href="#bb0100"><span class="elsevierStyleSup">20</span></a> Watanabe et al.<a class="elsevierStyleCrossRef" href="#bb0105"><span class="elsevierStyleSup">21</span></a> presented a dose-response model between humans and viruses and measured the risk of SARS via any possible routes of infection.<a class="elsevierStyleCrossRef" href="#bb0105"><span class="elsevierStyleSup">21</span></a> Zhang et al.<a class="elsevierStyleCrossRef" href="#bb0110"><span class="elsevierStyleSup">22</span></a> developed a dose-response relation for SARS, and MERS coronavirus based on mice experiments to shed light on the dose-response relation for humans and showed that the infection risk caused by one virus copy in viral shedding is about 1.5<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">−6</span> to 1.6<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">−5</span>.<a class="elsevierStyleCrossRef" href="#bb0110"><span class="elsevierStyleSup">22</span></a> Chu et al.<a class="elsevierStyleCrossRef" href="#bb0115"><span class="elsevierStyleSup">23</span></a> showed that the dose-response relation for SARS and COVID-19 is an exponential function, which behaves nearly linearly if the probability of infection was less than 15%.<a class="elsevierStyleCrossRef" href="#bb0115"><span class="elsevierStyleSup">23</span></a> Cascini et al.<a class="elsevierStyleCrossRef" href="#bb0120"><span class="elsevierStyleSup">24</span></a> focused that the people who are unwilling to be vaccinated or reject vaccines constitute the major issue. Although, these studies have made significant contributions to investigate the COVID-19 in different aspects and its controlling system by vaccination, but we need more investigations to know about vaccine efficiency.</p><p id="p0030" class="elsevierStylePara elsevierViewall">From the analysis of previous studies, it is apparent that proper modeling of COVID-19 depends strongly on the appropriate evaluation of the controling factors. This article, therefore, focuses on the two stains mathematical analysis of the COVID-19 pandemic including the vaccination and treatment compartment to the control reproduction number, transmissibility of the virus, vaccine efficacy, and vaccination rate. This paper is organized as follows. The proposed COVID-19 model is formulated in Section 2. Numerical analysis and results are presented in Section 3. Finally, the conclusions are summarized in Section 4.</p></span><span id="s0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0070">Model</span><span id="s0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0075">Model formulation</span><p id="p0035" class="elsevierStylePara elsevierViewall">Mathematical formulation based on the several compartments are very common technique for investigating the infectious diseases. In this technique, the total population is divided into several sub-compartments. The models are generally run with the ordinary differential equations those describe the flow patterns of individuals among the compartments. The proposed mathematical model is developed based on the SEIATR compartmental model.<a class="elsevierStyleCrossRef" href="#bb0040"><span class="elsevierStyleSup">8</span></a> We divide the total population into two main compartments: non-vaccinated population and vaccinated population. We also assume that the population is vaccinated at a rate of <span class="elsevierStyleItalic">ϵ</span>, and <span class="elsevierStyleItalic">π</span>(<span class="elsevierStyleItalic">n</span>) is the effective rate of the vaccination which goes to the removal compartment (<span class="elsevierStyleItalic">R</span>). Furthermore, we divide the vaccinated population into five compartments: the susceptible population (<span class="elsevierStyleItalic">S</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>), the exposed compartment (<span class="elsevierStyleItalic">E</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>), the infected compartment (<span class="elsevierStyleItalic">I</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>), the asymptomatic population (<span class="elsevierStyleItalic">A</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>), and the treatment compartment (<span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>). Similarly, the non-vaccinated compartment is also divided into five compartments: the susceptible population (<span class="elsevierStyleItalic">S</span>), the exposed compartment (<span class="elsevierStyleItalic">E</span>), the infected compartment (<span class="elsevierStyleItalic">I</span>), the asymptomatic compartment (<span class="elsevierStyleItalic">A</span>), and the treatment compartment (<span class="elsevierStyleItalic">T</span>). The flow chart of individuals among the different compartments is illustrated in Fig. 1.</p><p id="p0040" class="elsevierStylePara elsevierViewall">There are three main parameters, such as transmission dynamics, the vaccine’s efficacy, and antiviral treatment to estimate the new infective individuals across the hazard scale affected by the COVID-19. From the aforementioned and the model flow diagram (<a class="elsevierStyleCrossRef" href="#f0005">Fig. 1</a>), we can derive the following nonlinear system of differential equations as:<elsevierMultimedia ident="fo0005"></elsevierMultimedia><elsevierMultimedia ident="fo0010"></elsevierMultimedia><elsevierMultimedia ident="fo0015"></elsevierMultimedia><elsevierMultimedia ident="fo0020"></elsevierMultimedia><elsevierMultimedia ident="fo0025"></elsevierMultimedia><elsevierMultimedia ident="fo0030"></elsevierMultimedia><elsevierMultimedia ident="fo0035"></elsevierMultimedia><elsevierMultimedia ident="fo0040"></elsevierMultimedia><elsevierMultimedia ident="fo0045"></elsevierMultimedia><elsevierMultimedia ident="fo0050"></elsevierMultimedia><elsevierMultimedia ident="fo0055"></elsevierMultimedia></p><elsevierMultimedia ident="f0005"></elsevierMultimedia><p id="p0045" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">Q</span> is defined by <span class="elsevierStyleItalic">Q</span> = <span class="elsevierStyleItalic">I</span> + <span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf">1</span><span class="elsevierStyleItalic">A</span> + <span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf">2</span><span class="elsevierStyleItalic">T</span> + <span class="elsevierStyleItalic">I</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span> + <span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span>1</span><span class="elsevierStyleItalic">A</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span> + <span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span>2</span><span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>, and the initial conditions are given by</p><p id="p0050" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">S</span>(0) = (1 − <span class="elsevierStyleItalic">ε</span>)<span class="elsevierStyleItalic">S</span><span class="elsevierStyleInf">0</span>,<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">E</span>(0) = <span class="elsevierStyleItalic">E</span><span class="elsevierStyleInf">0</span>,<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">I</span>(0) = <span class="elsevierStyleItalic">I</span><span class="elsevierStyleInf">0</span>,<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">A</span>(0) = <span class="elsevierStyleItalic">A</span><span class="elsevierStyleInf">0</span>,<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">T</span>(0) = <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf">0</span>,<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">R</span>(0) = <span class="elsevierStyleItalic">R</span><span class="elsevierStyleInf">0</span> and<elsevierMultimedia ident="fo0060"></elsevierMultimedia></p><p id="p0055" class="elsevierStylePara elsevierViewall">The symbols <span class="elsevierStyleItalic">β</span> and <span class="elsevierStyleItalic">β</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span> represent the transmission rate of the COVID-19 for non-vaccinated and vaccinated susceptible population, respectively, and [1,<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf">1,</span><span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf">2,</span> 1,<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span>1</span>,<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span>2</span>] is the row vector of relative horizontal transmissions of the diseases for <span class="elsevierStyleItalic">I</span>, <span class="elsevierStyleItalic">A</span>, <span class="elsevierStyleItalic">T</span>, <span class="elsevierStyleItalic">I</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>, <span class="elsevierStyleItalic">A</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>, and <span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>, respectively. Furthermore, 1γ and 1γv are the average incubation period for the non-vaccinated and vaccinated populations, respectively. <span class="elsevierStyleItalic">p</span> and <span class="elsevierStyleItalic">p</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span> are the fraction of the non-vaccinated exposed population (<span class="elsevierStyleItalic">E</span>) and vaccinated exposed population (<span class="elsevierStyleItalic">E</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>) those goes to non-vaccinated infective population compartment (<span class="elsevierStyleItalic">I</span>) and vaccinated infective population compartment (<span class="elsevierStyleItalic">I</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>) at a rate <span class="elsevierStyleItalic">γ</span> and <span class="elsevierStyleItalic">γ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>, respectively and remain population goes to corresponding asymptomatic compartments (<span class="elsevierStyleItalic">A</span>, <span class="elsevierStyleItalic">A</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>) which are shown in <a class="elsevierStyleCrossRef" href="#f0005">Fig. 1</a>. For the non-vaccinated population, let <span class="elsevierStyleItalic">α</span> and <span class="elsevierStyleItalic">η</span> be the rate of the infective (<span class="elsevierStyleItalic">I</span>) and asymptomatic (<span class="elsevierStyleItalic">A</span>) population that goes to the treatment compartment (<span class="elsevierStyleItalic">T</span>), respectively. Similarly, for the vaccinated population, let <span class="elsevierStyleItalic">α</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span> and <span class="elsevierStyleItalic">η</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span> be the rate of the infective (<span class="elsevierStyleItalic">I</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>) and asymptomatic (<span class="elsevierStyleItalic">A</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>) population which goes to treatment compartment (<span class="elsevierStyleItalic">T</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>), respectively. 1σ and 1σv are the average treatment period for non-vaccinated and vaccinated population, respectively and 1δ and 1δv are the average recovery period of the non-vaccinated asymptomatic and vaccinated asymptomatic populations, respectively. We assume <span class="elsevierStyleItalic">M</span> and <span class="elsevierStyleItalic">M</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span> as the migration rate of the non-vaccinated and vaccinated population, respectively, and <span class="elsevierStyleItalic">λ</span> be the re-susceptible rate. <span class="elsevierStyleItalic">μ</span><span class="elsevierStyleInf">1</span>, <span class="elsevierStyleItalic">μ</span><span class="elsevierStyleInf">2</span>, <span class="elsevierStyleItalic">μ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span>1</span>, and, <span class="elsevierStyleItalic">μ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span>2</span> are the mortality rate of the non-vaccinated infective, non-vaccinated treatment, vaccinated infective, and vaccinated treatment population, respectively.</p><p id="p0060" class="elsevierStylePara elsevierViewall">In addition, we assume that<ul class="elsevierStyleList" id="l0005"><li class="elsevierStyleListItem" id="li0005"><span class="elsevierStyleLabel">1.</span><p id="p0065" class="elsevierStylePara elsevierViewall">The transmission in a vaccinated population is <span class="elsevierStyleItalic">τ</span> times lower than that of the non-vaccinated population, that is, <span class="elsevierStyleItalic">β</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span> = <span class="elsevierStyleItalic">τβ</span>, where 0 ≤ <span class="elsevierStyleItalic">τ</span> ≤ 1.</p></li><li class="elsevierStyleListItem" id="li0010"><span class="elsevierStyleLabel">2.</span><p id="p0070" class="elsevierStylePara elsevierViewall">Vaccination reduces the rate of departure from <span class="elsevierStyleItalic">E</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span> to <span class="elsevierStyleItalic">I</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span> by a factor <span class="elsevierStyleItalic">ς</span> from that of the rate from <span class="elsevierStyleItalic">E</span> to <span class="elsevierStyleItalic">I</span>, that is, <span class="elsevierStyleItalic">p</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span> = <span class="elsevierStyleItalic">ςp</span>, where 0 ≤ <span class="elsevierStyleItalic">ς</span> ≤ 1.</p></li><li class="elsevierStyleListItem" id="li0015"><span class="elsevierStyleLabel">3.</span><p id="p0075" class="elsevierStylePara elsevierViewall">Vaccination can decrease at the rates <span class="elsevierStyleItalic">γ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>, <span class="elsevierStyleItalic">α</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>, <span class="elsevierStyleItalic">η</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>, <span class="elsevierStyleItalic">μ</span><span class="elsevierStyleInf">1</span>, <span class="elsevierStyleItalic">μ</span><span class="elsevierStyleInf">2</span> and it is reasonable that <span class="elsevierStyleItalic">γ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span> ≤ <span class="elsevierStyleItalic">γ</span>, <span class="elsevierStyleItalic">α</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span> ≤ <span class="elsevierStyleItalic">α</span>, <span class="elsevierStyleItalic">η</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span> ≤ <span class="elsevierStyleItalic">η</span>, <span class="elsevierStyleItalic">μ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span>1</span> ≤ <span class="elsevierStyleItalic">μ</span><span class="elsevierStyleInf">1</span>, <span class="elsevierStyleItalic">μ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span>2</span> ≤ <span class="elsevierStyleItalic">μ</span><span class="elsevierStyleInf">2</span>.</p></li></ul></p><p id="p0080" class="elsevierStylePara elsevierViewall">Also<elsevierMultimedia ident="fo0065"></elsevierMultimedia></p><p id="p0085" class="elsevierStylePara elsevierViewall">We assume <span class="elsevierStyleItalic">ξ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">i</span></span> = [0,<span class="elsevierStyleHsp" style=""></span>1], where <span class="elsevierStyleItalic">i</span> = 1, 2, 3, 4, 5, 6, 7, 8, 9, and define the following relations</p><p id="p0090" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">γ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span> = <span class="elsevierStyleItalic">ξ</span><span class="elsevierStyleInf">1</span><span class="elsevierStyleItalic">γ</span>,<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">α</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span> = <span class="elsevierStyleItalic">ξ</span><span class="elsevierStyleInf">2</span><span class="elsevierStyleItalic">α</span>,<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">η</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span> = <span class="elsevierStyleItalic">ξ</span><span class="elsevierStyleInf">3</span><span class="elsevierStyleItalic">η</span>,<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">μ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span>1</span> = <span class="elsevierStyleItalic">ξ</span><span class="elsevierStyleInf">4</span><span class="elsevierStyleItalic">μ</span><span class="elsevierStyleInf">1</span>,<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">μ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span>2</span> = <span class="elsevierStyleItalic">ξ</span><span class="elsevierStyleInf">5</span><span class="elsevierStyleItalic">μ</span><span class="elsevierStyleInf">2</span>,<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">σ</span> = <span class="elsevierStyleItalic">ξ</span><span class="elsevierStyleInf">6</span><span class="elsevierStyleItalic">σ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>,<span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">δ</span> = <span class="elsevierStyleItalic">ξ</span><span class="elsevierStyleInf">7</span><span class="elsevierStyleItalic">δ</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>.</p><p id="p0095" class="elsevierStylePara elsevierViewall">We also assume<elsevierMultimedia ident="fo0070"></elsevierMultimedia></p><p id="p0100" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Lemma:</span> Subject to the initial conditions presented in Eq. <a class="elsevierStyleCrossRef" href="#fo0060">(12)</a>, the total recovery population can be determined by the relation<elsevierMultimedia ident="fo0075"></elsevierMultimedia></p><p id="p0105" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Proof:</span> The total non-vaccinated and vaccinated infected population can be defined, respectively as<elsevierMultimedia ident="fo0080"></elsevierMultimedia></p><p id="p0110" class="elsevierStylePara elsevierViewall">and<elsevierMultimedia ident="fo0085"></elsevierMultimedia></p><p id="p0115" class="elsevierStylePara elsevierViewall">Now adding Eq.<a class="elsevierStyleCrossRef" href="#fo0005">(1)</a> and Eq. <a class="elsevierStyleCrossRef" href="#fo0010">(2)</a>, we get<elsevierMultimedia ident="fo0090"></elsevierMultimedia></p><p id="p0120" class="elsevierStylePara elsevierViewall">Integrating Eq. <a class="elsevierStyleCrossRef" href="#fo0015">(3)</a> and taking the limit from 0 to <span class="elsevierStyleItalic">t</span>, we have<elsevierMultimedia ident="fo0095"></elsevierMultimedia></p><p id="p0125" class="elsevierStylePara elsevierViewall">Again, integrating Eq.<a class="elsevierStyleCrossRef" href="#fo0090">(13)</a> with the limits from 0 to <span class="elsevierStyleItalic">t</span>, yields<elsevierMultimedia ident="fo0100"></elsevierMultimedia></p><p id="p0130" class="elsevierStylePara elsevierViewall">Furthermore, integrating Eqs. <a class="elsevierStyleCrossRefs" href="#fo0020">(4) and (5)</a> from 0 to <span class="elsevierStyleItalic">t</span>, we have<elsevierMultimedia ident="fo0105"></elsevierMultimedia><elsevierMultimedia ident="fo0110"></elsevierMultimedia></p><p id="p0135" class="elsevierStylePara elsevierViewall">Similarly, Eqs. <a class="elsevierStyleCrossRefs" href="#fo0040">(8), (9) and (10)</a> gives as follows<elsevierMultimedia ident="fo0115"></elsevierMultimedia><elsevierMultimedia ident="fo0120"></elsevierMultimedia><elsevierMultimedia ident="fo0125"></elsevierMultimedia></p><p id="p0140" class="elsevierStylePara elsevierViewall">By integrating of Eq. <a class="elsevierStyleCrossRef" href="#fo0055">(11)</a> with the limits 0 to <span class="elsevierStyleItalic">t</span>, and simplifying it with the help of Eqs. <a class="elsevierStyleCrossRefs" href="#fo0105">(16), (18), (17), (19), and (20)</a>, we get<elsevierMultimedia ident="fo0130"></elsevierMultimedia></p><p id="p0145" class="elsevierStylePara elsevierViewall">Thus,<elsevierMultimedia ident="fo0135"></elsevierMultimedia></p><p id="p0150" class="elsevierStylePara elsevierViewall">Hence the lemma is proved.</p></span><span id="s0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0080">Control reproduction number</span><p id="p0155" class="elsevierStylePara elsevierViewall">The basic reproduction number (R0) is the expected value of secondary infection by one infective population during its entire infectious period.<a class="elsevierStyleCrossRef" href="#bb0125"><span class="elsevierStyleSup">25</span></a> This number is determined by the spectral radius of the next generation matrix <span class="elsevierStyleItalic">FV</span><span class="elsevierStyleSup">−1</span>for compartmental disease models,<a class="elsevierStyleCrossRef" href="#bb0130"><span class="elsevierStyleSup">26</span></a> where <span class="elsevierStyleItalic">F</span> and <span class="elsevierStyleItalic">V</span> are the matrices of new secondary infection terms and the remaining transmission (increase or decrease of disease) term, respectively. From the system of Eqs.<a class="elsevierStyleCrossRefs" href="#fo0005">(1) –(11)</a>, we obtain the <span class="elsevierStyleItalic">F</span> and <span class="elsevierStyleItalic">V</span>matrices as follows<elsevierMultimedia ident="fo0140"></elsevierMultimedia><elsevierMultimedia ident="fo0145"></elsevierMultimedia></p><p id="p0160" class="elsevierStylePara elsevierViewall">Thus, we obtain<elsevierMultimedia ident="fo0150"></elsevierMultimedia></p><p id="p0165" class="elsevierStylePara elsevierViewall">where<elsevierMultimedia ident="fo0155"></elsevierMultimedia><elsevierMultimedia ident="fo0160"></elsevierMultimedia></p><p id="p0170" class="elsevierStylePara elsevierViewall">Here Ru andRv are the basic reproduction number for the non-vaccinated population and vaccinated population, respectively. It is worth mentioning here that the infection at the beginning in a population that is not completely susceptible is called the control reproduction number Rc rather than the basic reproduction numberR0, and it is the number of secondary infections both in the vaccinated and non-vaccinated population.<a class="elsevierStyleCrossRef" href="#bb0130"><span class="elsevierStyleSup">26</span></a></p></span><span id="s0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0085">Dose-response relationship</span><p id="p0175" class="elsevierStylePara elsevierViewall">The fundamental dose-response relation which fixes a number of the pathogen (dose) with the probability of infection is important for evaluating and controlling the transmission risk of the disease. Zhang et al.<a class="elsevierStyleCrossRef" href="#bb0110"><span class="elsevierStyleSup">22</span></a> proposed an exponential dose-response relation which is widely used for SARS, MERS, MHV-1, and COVID-19.<a class="elsevierStyleCrossRef" href="#bb0105"><span class="elsevierStyleSup">21</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bb0135"><span class="elsevierStyleSup">27</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bb0140"><span class="elsevierStyleSup">28</span></a> Chu et al.<a class="elsevierStyleCrossRef" href="#bb0115"><span class="elsevierStyleSup">23</span></a> calculated that the anticipated probability of viral infection is about 12.8% within 1 meter, which decreases to about 2.6% at a further distance.<a class="elsevierStyleCrossRef" href="#bb0115"><span class="elsevierStyleSup">23</span></a> The dose-response relation proposed by Zhang et al.<a class="elsevierStyleCrossRef" href="#bb0110"><span class="elsevierStyleSup">22</span></a> is given by<elsevierMultimedia ident="fo0165"></elsevierMultimedia></p><p id="p0180" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">p</span> is the infection probability, <span class="elsevierStyleItalic">d</span> is the exposure dose and <span class="elsevierStyleItalic">k</span> is the pathogen-dependent parameter in the range of 6.19 × 10<span class="elsevierStyleSup">4</span>to 7.28 × 10<span class="elsevierStyleSup">5</span> virus copies.</p><p id="p0185" class="elsevierStylePara elsevierViewall">Dose-response relation possesses the following properties:<ul class="elsevierStyleList" id="l0010"><li class="elsevierStyleListItem" id="li0020"><span class="elsevierStyleLabel">(i)</span><p id="p0190" class="elsevierStylePara elsevierViewall">If there are no pathogens, then the probability of infection is zero;</p></li><li class="elsevierStyleListItem" id="li0025"><span class="elsevierStyleLabel">(ii)</span><p id="p0195" class="elsevierStylePara elsevierViewall">If there are a large number of the pathogen (doses), then the probability of infection is large, with limd→∞pd=1, i.e., the dose probability of infection tends to be one at an infinite dose.</p></li></ul></p><p id="p0200" class="elsevierStylePara elsevierViewall">For a homogeneously mixed population, the transmission rate (<span class="elsevierStyleItalic">β</span>) of the disease spread is the product of infection probability (<span class="elsevierStyleItalic">p</span>) with the individual contact rate,<a class="elsevierStyleCrossRef" href="#bb0145"><span class="elsevierStyleSup">29</span></a> which depends on the population density (<span class="elsevierStyleItalic">ρ</span>).<a class="elsevierStyleCrossRef" href="#bb0150"><span class="elsevierStyleSup">30</span></a> Hence,<elsevierMultimedia ident="fo0170"></elsevierMultimedia></p><p id="p0205" class="elsevierStylePara elsevierViewall">With the help of Eq. <a class="elsevierStyleCrossRef" href="#fo0095">(14)</a> and Eq. <a class="elsevierStyleCrossRef" href="#fo0100">(15)</a>, we obtain<elsevierMultimedia ident="fo0175"></elsevierMultimedia></p><p id="p0210" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">c</span><span class="elsevierStyleInf">0</span> is a constant.</p></span><span id="s0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0090">Critical vaccination coverage</span><p id="p0215" class="elsevierStylePara elsevierViewall">For homogeneously mixed populations, critical vaccination coverage (<span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">c</span></span>) is defined as<a class="elsevierStyleCrossRef" href="#bb0055"><span class="elsevierStyleSup">11</span></a><elsevierMultimedia ident="fo0180"></elsevierMultimedia></p><p id="p0220" class="elsevierStylePara elsevierViewall">whereRcrepresents the control reproduction number as defined earlier. In terms of Rc , the minimum vaccination coverage can be defined as<a class="elsevierStyleCrossRef" href="#bb0155"><span class="elsevierStyleSup">31</span></a><elsevierMultimedia ident="fo0185"></elsevierMultimedia></p><p id="p0225" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">r</span> is the fraction of the vaccinated population that are completely immunized and <span class="elsevierStyleItalic">s</span> is the proportional reduction of the susceptibility for those who are partially immunized.</p></span></span><span id="s0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0095">Numerical Simulations and Results</span><p id="p0230" class="elsevierStylePara elsevierViewall">To illustrate the theoretical results, numerical simulations are carried out. We use the RK-45 numerical method to simulate the proposed model, dose-response relation, and critical vaccination number that are available in MATLAB. Due to the pandemic situation, compiling the value of the corresponding parameters are difficult. So, we have used the partial data in analyzing the times series; however, analysis based on the long time intervals may be too accurate. In this study, we used secondary data that is already available in the open data source GitHub and re-use of this data needs no ethical clearance. The parameter values used in the simulations are summarized in <a class="elsevierStyleCrossRefs" href="#t0005">Tables 1-4</a>. The mean transmission and mortality rate of the COVID-19 pandemic of several countries from the first reported date to 30 May 2021 are mentioned in <a class="elsevierStyleCrossRef" href="#t0005">Table 1</a>. Whenever parameter values were not available in the literature, we assume realistic values for the purpose of illustration. Other values of the parameters that are used in the simulations are listed in <a class="elsevierStyleCrossRef" href="#t0010">Table 2</a>. Efficiencies of different vaccines are summarized in <a class="elsevierStyleCrossRef" href="#t0015">Table 3</a>. We thus fit the control reproduction number (Eq. <a class="elsevierStyleCrossRef" href="#fo0150">22</a>), the dose-response relationship (Eqs.<a class="elsevierStyleCrossRefs" href="#fo0165">23-25</a>), and critical vaccination coverage (Eq. <a class="elsevierStyleCrossRef" href="#fo0180">26</a>) for different values of parameters to understand the evolution of vaccination throughout the pandemic. The data is fitted over non-intersecting parameter space to understand the change in the value of the parameters.</p><elsevierMultimedia ident="t0005"></elsevierMultimedia><elsevierMultimedia ident="t0010"></elsevierMultimedia><elsevierMultimedia ident="t0015"></elsevierMultimedia><elsevierMultimedia ident="t0020"></elsevierMultimedia><p id="p0235" class="elsevierStylePara elsevierViewall">The present study of COVID-19 is developed mainly based on reports and do not follow to the general principles of experimental plans. Such collected data suffers from many limitations when used to derive scientific conclusions. These include confusing factors, unequal efficiencies, measurement errors, bias selection effects, poor judgement and each of these elements represents a source of uncertainty. Other important limitations are the human activities and other environmental factors.</p><span id="s0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0100">Basic reproduction number</span><p id="p0240" class="elsevierStylePara elsevierViewall">Basic reproduction numbers under vaccination and non-vaccination and control reproduction numbers are plotted in <a class="elsevierStyleCrossRef" href="#f0010">Fig. 2</a>. The control reproduction numberRc is composited of basic reproduction number under the non-vaccinated individualsRu and vaccinated individualsRv. It can be seen from <a class="elsevierStyleCrossRef" href="#f0010">Fig. 2</a>(a) that control reproduction number Rcand basic reproduction number under vaccination Rv are both less than the reproduction number under non-vaccinated individualsRu. Besides, both Rc and Rv are seen to be increased with the increasing of vaccination rate <span class="elsevierStyleItalic">τ</span> (where 0 ≤ τ ≤ 1). However, the vaccination efficacy (<span class="elsevierStyleItalic">π</span>(<span class="elsevierStyleItalic">n</span>)) has a vital role on Rv, as shown in <a class="elsevierStyleCrossRef" href="#f0010">Fig. 2</a>(b). This figure demonstrates that Rv decreases with the increase of vaccine efficacy. <a class="elsevierStyleCrossRef" href="#f0010">Fig. 2</a>(c) illustrates that a smaller control reproduction number Rc can be achieved by administering vaccines at a higher rate (<span class="elsevierStyleItalic">ε</span>). Further, this figure shows that when the vaccination rate (<span class="elsevierStyleItalic">ε</span>)is larger than 0.75, the epidemic will die out and the control reproduction number is found to be less than one. The surface in <a class="elsevierStyleCrossRef" href="#f0010">Fig. 2</a>(d) shows the changes of Rc for the reduction factor of the transmission rate (τ) by vaccination and the vaccination rate (<span class="elsevierStyleItalic">ε</span>) under two different cases of dose-response relationships.</p><elsevierMultimedia ident="f0010"></elsevierMultimedia></span><span id="s0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0105">Dose-response relation</span><p id="p0245" class="elsevierStylePara elsevierViewall">The probability of infections is estimated (Eq. <a class="elsevierStyleCrossRefs" href="#fo0165">23-25</a>) for virus copies (<span class="elsevierStyleItalic">k</span>) from 6.19 × 10<span class="elsevierStyleSup">4</span> to 7.28 × 10<span class="elsevierStyleSup">5</span>dependent on the contribution of the flying virus-laden particles among the exposure dose as shown in <a class="elsevierStyleCrossRef" href="#f0015">Fig. 3</a>(a). This figure indicates that as the exposure dose (<span class="elsevierStyleItalic">d</span>)increases, the probability of infection (<span class="elsevierStyleItalic">p</span>) also increases for various choices of virus copies (<span class="elsevierStyleItalic">k</span>). The infection risks for different exposure doses along with increasing virus copies are shown in <a class="elsevierStyleCrossRef" href="#f0015">Fig. 3</a>(b). It can be seen from this figure that the infection risks are decreasing with the increasing exposure doses. Furthermore, the profiles of the transmission rate (<span class="elsevierStyleItalic">β</span>) versus the exposure dose (<span class="elsevierStyleItalic">d</span>) are presented in <a class="elsevierStyleCrossRef" href="#f0015">Fig. 3</a>(c) for different virus copies (<span class="elsevierStyleItalic">k</span>). Since the exposure dose and virus copies affect the transmission rate and reflective patterns on disease situation, these parameters have also an effect on reproduction numbers Ru,Rv and Rc, as can be seen in <a class="elsevierStyleCrossRef" href="#f0015">Figs. 3</a>(d)-<a class="elsevierStyleCrossRef" href="#f0015">3</a>(f).</p><elsevierMultimedia ident="f0015"></elsevierMultimedia></span><span id="s0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0110">Critical vaccination coverage</span><p id="p0250" class="elsevierStylePara elsevierViewall">Basic reproduction number has direct impacts on the vaccination coverage as it is computed based on the basic reproduction number. Consequently, the critical vaccination coverage (<span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">c</span></span>) depends on the parameters that are included in the control reproduction number (Rc). <a class="elsevierStyleCrossRef" href="#f0020">Fig. 4</a>(a) shows the critical vaccination coverage corresponding to the transmission rate at several vaccine rates, whereas Fig. 4(b) shows the same corresponding to the reduction factor of the transmission rate (<span class="elsevierStyleItalic">τ</span>) at several vaccination efficiencies. <a class="elsevierStyleCrossRef" href="#f0020">Fig. 4</a>(a) demonstrates that the critical vaccination coverage (<span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">c</span></span>) demands with an increased transmission rate rise sharply in the beginning, which, however, reaches a threshold shortly and remains almost constant even though the transmission rate increases. In contrast, <a class="elsevierStyleCrossRef" href="#f0020">Fig. 4</a>(b) demonstrates that it increases linearly with an increasing <span class="elsevierStyleItalic">τ</span>. Finally, to observe the dependency of <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">c</span></span> on both <span class="elsevierStyleItalic">τ</span> and <span class="elsevierStyleItalic">ε</span> at once, we have presented a surface plot taking the relationship of <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">c</span></span> with <span class="elsevierStyleItalic">τ</span> and <span class="elsevierStyleItalic">ε</span> into account (see <a class="elsevierStyleCrossRef" href="#f0020">Fig. 4</a>(c)).</p><elsevierMultimedia ident="f0020"></elsevierMultimedia><p id="p0255" class="elsevierStylePara elsevierViewall">Furthermore, in <a class="elsevierStyleCrossRef" href="#f0025">Fig. 5</a>, we have compared our model result with the real data of total deaths due to COVID-19 in the United States. It is seen that model’ result is supported by the collected data. In <a class="elsevierStyleCrossRef" href="#f0025">Fig. 5</a>, we can not present the statistical data of total death for vaccinated and non-vaccinated compartment separately.</p><elsevierMultimedia ident="f0025"></elsevierMultimedia></span></span><span id="s0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0115">Conclusions</span><p id="p0260" class="elsevierStylePara elsevierViewall">Due to a lack of a well-justified research design of COVID-19, we developed a modified SEIATR model<a class="elsevierStyleCrossRef" href="#bb0040"><span class="elsevierStyleSup">8</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bb0165"><span class="elsevierStyleSup">33</span></a> based on a well-defined SEIR compartmental model to investigate the pandemic’s transmission dynamics, the vaccine’s efficacy, and antiviral treatment. We applied the RK-45 method for solving the model’s equations and verified these results by the statistical data. We provided the statistical data in the public repository GitHub<a class="elsevierStyleCrossRef" href="#bb0160"><span class="elsevierStyleSup">32</span></a> with their sources for analyzing and simulating the model. It was observed that the probability of infection for different dose-response increased as the competency of transmission of various copies matched simultaneously with the SARS and MARS<a class="elsevierStyleCrossRef" href="#bb0110"><span class="elsevierStyleSup">22</span></a>. Furthermore, we also found that the infection risk decreased with an increasing exposure dose. In addition, we investigated the critical vaccination coverage demands corresponding to an increased transmission rate and reduction factor of the transmission rate. Furthermore, the results narrated that the critical vaccination coverage demands corresponding to an increased transmission rate raised sharply initially and then reached a threshold. In contrast, the critical vaccination coverage demands increased linearly with the increase of the reduction factor of the transmission rate for a certain vaccine efficiency rate. On the other hand, it was noted that if the vaccine efficacy was low and the disease transmission rate was high, the disease might not be eradicated. Similar results were derived by Diagne et al.<a class="elsevierStyleCrossRef" href="#bb0080"><span class="elsevierStyleSup">16</span></a> The data for COVID-19 vaccinations were published quickly, confirming that most statistical and computational tools cannot correctly overcome the poor quality of acquired data. The primary evidence for this observation came from the poor reproducibility of results. This study is not exhaustive and future research could investigate the dynamics of COVID-19 on diabetic patients.</p></span><span id="s0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0120">Funding information</span><p id="p0265" class="elsevierStylePara elsevierViewall">This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.</p></span><span id="s0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0125">Authors’ contributions</span><p id="p0270" class="elsevierStylePara elsevierViewall">A. Malek designed the concept and methodology of this research work. In addition, he conducted the formal analysis and wrote the original draft of the manuscript. A. Haque supervised this research work. He also took part in the formal analysis, revising, and editing of the manuscript.</p></span><span id="s0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0130">Declaration of interest</span><p id="p0275" class="elsevierStylePara elsevierViewall">The authors declare no conflicts of interest. All the authors have equally agreed to publish the final version of the manuscript.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:12 [ 0 => array:3 [ "identificador" => "xres2078634" "titulo" => "Abstract" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "as0005" "titulo" => "Objective" ] 1 => array:2 [ "identificador" => "as0010" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "as0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "as0020" "titulo" => "Conclusions" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1773348" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres2078633" "titulo" => "Resumen" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "as0025" "titulo" => "Objetivo" ] 1 => array:2 [ "identificador" => "as0030" "titulo" => "Métodos" ] 2 => array:2 [ "identificador" => "as0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "as0040" "titulo" => "Conclusiones" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1773347" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "s0005" "titulo" => "Introduction" ] 5 => array:3 [ "identificador" => "s0010" "titulo" => "Model" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "s0015" "titulo" => "Model formulation" ] 1 => array:2 [ "identificador" => "s0020" "titulo" => "Control reproduction number" ] 2 => array:2 [ "identificador" => "s0025" "titulo" => "Dose-response relationship" ] 3 => array:2 [ "identificador" => "s0030" "titulo" => "Critical vaccination coverage" ] ] ] 6 => array:3 [ "identificador" => "s0035" "titulo" => "Numerical Simulations and Results" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "s0040" "titulo" => "Basic reproduction number" ] 1 => array:2 [ "identificador" => "s0045" "titulo" => "Dose-response relation" ] 2 => array:2 [ "identificador" => "s0050" "titulo" => "Critical vaccination coverage" ] ] ] 7 => array:2 [ "identificador" => "s0055" "titulo" => "Conclusions" ] 8 => array:2 [ "identificador" => "s0060" "titulo" => "Funding information" ] 9 => array:2 [ "identificador" => "s0065" "titulo" => "Authors’ contributions" ] 10 => array:2 [ "identificador" => "s0070" "titulo" => "Declaration of interest" ] 11 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2022-02-16" "fechaAceptado" => "2023-04-19" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1773348" "palabras" => array:5 [ 0 => "Control Reproduction Number" 1 => "Vaccination" 2 => "Vaccine efficacy, Exposure Dose" 3 => "Virus Copies" 4 => "Vaccination Coverage" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1773347" "palabras" => array:5 [ 0 => "Control Número de reproducción" 1 => "Vacunación" 2 => "Eficacia de la vacuna, dosis de exposición" 3 => "Copias de virus" 4 => "Cobertura de vacunación" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="as0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0010">Objective</span><p id="sp0050" class="elsevierStyleSimplePara elsevierViewall">The objective of this study is to develop a mathematical model for the COVID-19 pandemic including vaccination, the transmissibility of the virus-pathogen dose-response relationship, vaccine efficiency, and vaccination rate.</p></span> <span id="as0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0015">Methods</span><p id="sp0055" class="elsevierStyleSimplePara elsevierViewall">The Runge-Kutta (RK-45) method was applied to solve the proposed model with MATLAB code and the calculated results show the dynamics of the individuals in each compartment. The data of total death due to the COVID-19 pandemic in the case of the USA were collected from GitHub and the re-use of this data needs no ethical clearance. The control reproduction number was used to assess the dose-response relationship and critical vaccination coverage.</p></span> <span id="as0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0020">Results</span><p id="sp0060" class="elsevierStyleSimplePara elsevierViewall">We have calculated the probability of infection and the infection risk against the different exposure doses and the virus copies, respectively. The results show that the probability of infection increases with the increasing exposure dose for certain virus copies and the risk of infection decreases with the increasing of virus copies for a certain exposure dose. The results also show that the critical vaccination coverage demands increase with an increase in transmission rate and decrease with increasing vaccine efficacy.</p></span> <span id="as0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0025">Conclusions</span><p id="sp0065" class="elsevierStyleSimplePara elsevierViewall">It was seen that the critical vaccination coverage corresponding to an increased transmission rate rise sharply in the beginning and then reached a threshold. Moreover, the real data of the total death cases in the USA were compared with the fitted curved of the model which validated the proposed model. Vaccination against COVID-19 is essential to control the pandemic, and achieving high vaccine uptake in the population can reduce the pandemic as fast as possible.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "as0005" "titulo" => "Objective" ] 1 => array:2 [ "identificador" => "as0010" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "as0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "as0020" "titulo" => "Conclusions" ] ] ] "es" => array:3 [ "titulo" => "Resumen" "resumen" => "<span id="as0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0035">Objetivo</span><p id="sp0070" class="elsevierStyleSimplePara elsevierViewall">El objetivo de este estudio es desarrollar un modelo matemático para la pandemia de COVID-19 que incluya la vacunación, la transmisibilidad de la relación dosis-respuesta virus-patógeno, la eficacia de la vacuna y la tasa de vacunación.</p></span> <span id="as0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0040">Métodos</span><p id="sp0075" class="elsevierStyleSimplePara elsevierViewall">Se aplicó el método de Runge-Kutta (RK-45) para resolver el modelo propuesto con código MATLAB y los resultados calculados muestran la dinámica de los individuos en cada compartimento. Los datos de muerte total por la pandemia de COVID-19 en el caso de EE. UU. se recopilaron de GitHub y la reutilización de estos datos no necesita autorización ética. El número de reproducción de control se utilizó para evaluar la relación dosis-respuesta y la cobertura de vacunación crítica.</p></span> <span id="as0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0045">Resultados</span><p id="sp0080" class="elsevierStyleSimplePara elsevierViewall">Hemos calculado la probabilidad de infección y el riesgo de infección frente a las diferentes dosis de exposición y las copias del virus, respectivamente. Los resultados muestran que la probabilidad de infección aumenta con el aumento de la dosis de exposición para ciertas copias del virus y el riesgo de infección disminuye con el aumento de las copias del virus para una determinada dosis de exposición. Los resultados también muestran que las demandas críticas de cobertura de vacunación aumentan con el aumento de la tasa de transmisión y disminuyen con el aumento de la eficacia de la vacuna.</p></span> <span id="as0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0050">Conclusiones</span><p id="sp0085" class="elsevierStyleSimplePara elsevierViewall">Se observó que las coberturas críticas de vacunación correspondientes a una mayor tasa de transmisión aumentaron bruscamente al principio y luego alcanzaron un umbral. Además, se compararon los datos reales del total de casos de muerte en EE. UU. con la curva ajustada del modelo que validó el modelo propuesto. La vacunación contra el COVID-19 es fundamental para controlar la pandemia, y lograr una alta captación de vacunas en la población puede reducir la pandemia lo más rápido posible.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "as0025" "titulo" => "Objetivo" ] 1 => array:2 [ "identificador" => "as0030" "titulo" => "Métodos" ] 2 => array:2 [ "identificador" => "as0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "as0040" "titulo" => "Conclusiones" ] ] ] ] "multimedia" => array:46 [ 0 => array:8 [ "identificador" => "f0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1665 "Ancho" => 2758 "Tamanyo" => 221719 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "al0005" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="sp0005" class="elsevierStyleSimplePara elsevierViewall">Schematic diagram of the compartmental model describing the transmission of the COVID-19 pandemic taking into account the vaccination program. Variables and parameters are defined in <a class="elsevierStyleCrossRef" href="#t0010">Table 2</a>.</p>" ] ] 1 => array:8 [ "identificador" => "f0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 2969 "Ancho" => 3356 "Tamanyo" => 999960 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "al0010" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="sp0010" class="elsevierStyleSimplePara elsevierViewall">Illustrates the COVID-19 pandemic dose-response and dynamics. (a) Basic reproduction number under the vaccination and non-vaccination for a different reduction factor of the transmission rate(<span class="elsevierStyleItalic">τ</span>). (b) Vaccinated basic reproduction number versus <span class="elsevierStyleItalic">τ</span> for different vaccine efficiencies. (c) Variation of control reproduction number under different vaccination rates. (d) Surface plot of <span class="elsevierStyleItalic">R</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">c</span></span> − ε − τ.</p>" ] ] 2 => array:8 [ "identificador" => "f0015" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 4599 "Ancho" => 3356 "Tamanyo" => 1352616 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "al0015" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="sp0015" class="elsevierStyleSimplePara elsevierViewall">Demonstrates the vaccination dose-response relations of COVID-19 pandemic and dynamics. (a) Probability of infection estimates of dose-response functions for COVID-19. (b) Estimated infection risk of infected people under different dose-response relationships. (c) Model results of transmission rate under different dose-response relationships. (d) Estimated basic reproduction numbers (<span class="elsevierStyleItalic">R</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">u</span></span>, <span class="elsevierStyleItalic">R</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">v</span></span>, <span class="elsevierStyleItalic">R</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">c</span></span>) over different exposure doses. (e) Control reproduction number vs exposure dose for different dose responses. (f) Reproduction number under vaccination program.</p>" ] ] 3 => array:8 [ "identificador" => "f0020" "etiqueta" => "Fig. 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 3289 "Ancho" => 3346 "Tamanyo" => 671012 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "al0020" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="sp0020" class="elsevierStyleSimplePara elsevierViewall">Variation of critical vaccination coverage for different parameters <span class="elsevierStyleItalic">β</span>, <span class="elsevierStyleItalic">ε</span>, <span class="elsevierStyleItalic">π</span>, <span class="elsevierStyleItalic">τ</span>. (a) Profiles of critical vaccination coverage against <span class="elsevierStyleItalic">β</span> in the range of 0 ≤ <span class="elsevierStyleItalic">β</span> ≤ 1 for different values of <span class="elsevierStyleItalic">ε</span>. (b) Critical vaccination coverage versus <span class="elsevierStyleItalic">τ</span> in the range of0 ≤ <span class="elsevierStyleItalic">τ</span> ≤ 1 for different values of <span class="elsevierStyleItalic">π</span>. (c) Surface plot of critical vaccination coverage for <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">c</span></span> − ε − τ.</p>" ] ] 4 => array:8 [ "identificador" => "f0025" "etiqueta" => "Fig. 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 1278 "Ancho" => 1644 "Tamanyo" => 207923 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "al0025" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="sp0025" class="elsevierStyleSimplePara elsevierViewall">Comparison of the model result with the real data for total death due to COVID-19 in United State.</p>" ] ] 5 => array:8 [ "identificador" => "t0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "al0030" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Country \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Transmission rate (<span class="elsevierStyleItalic">β</span>) per million \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Mortality rate (<span class="elsevierStyleItalic">μ</span>) per million \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Vaccination rate (<span class="elsevierStyleItalic">ϵ</span>) per hundred \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">References \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">USA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">209.4381 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.043707 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">44.98 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowgroup " rowspan="15" align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><a class="elsevierStyleCrossRef" href="#bb0160"><span class="elsevierStyleSup">32</span></a></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">UK \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">141.4757 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.400505 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">51.86 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Brazil \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">162.3716 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.728417 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">14.92 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">India \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">34.19009 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.408175 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9.59 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Russia \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">71.16028 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.82839 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8.87 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">South Africa \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">62.59478 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.265577 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.64 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Mexico \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">42.11185 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.086506 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10.88 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Peru \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">129.2845 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.613517 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.9 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Spain \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">165.1523 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.91003 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">28.39 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">France \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">181.3465 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.480551 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">25.73 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Iran \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">70.44494 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.990743 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.47 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Italy \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">146.2018 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.582729 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">26.9 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Germany \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">89.90602 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.377534 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">32.07 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Colombia \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">136.2856 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.668541 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.79 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Chile \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">146.8823 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.427158 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">44.78 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3441910.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="sp0030" class="elsevierStyleSimplePara elsevierViewall">Average transmission rate (<span class="elsevierStyleItalic">β</span>) death rate (<span class="elsevierStyleItalic">μ</span>)and vaccination rate (<span class="elsevierStyleItalic">ϵ</span>) of COVID-19 per day till May 7, 2021of several countries.</p>" ] ] 6 => array:8 [ "identificador" => "t0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "al0035" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Symbols \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Definitions \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Value \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">References \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf">1</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Coefficients of transmission vector of non-vaccinated asymptomatic \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><a class="elsevierStyleCrossRef" href="#bb0040"><span class="elsevierStyleSup">8</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">ρ</span><span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Coefficients of transmission vector of non-vaccinated treatment \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><a class="elsevierStyleCrossRef" href="#bb0040"><span class="elsevierStyleSup">8</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">γ</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Incubation rate of non-vaccinated infective \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1/6-1/7 day<span class="elsevierStyleSup">-1</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><a class="elsevierStyleCrossRef" href="#bb0170"><span class="elsevierStyleSup">34</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">p</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">fraction of the exposed individuals that go to non-vaccinated infective \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">20%-75% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><a class="elsevierStyleCrossRef" href="#bb0175"><span class="elsevierStyleSup">35</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">α</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Treatment rate of non-vaccinated infective \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.8-0.9 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><a class="elsevierStyleCrossRef" href="#bb0040"><span class="elsevierStyleSup">8</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">η</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Treatment rate of non-vaccinated asymptomatic \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.01 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><a class="elsevierStyleCrossRef" href="#bb0040"><span class="elsevierStyleSup">8</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">δ</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Removal rate from non-vaccinated asymptomatic \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.9 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleSup">---</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">σ</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Removal rate from non-vaccinated treatment \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.8-0.9 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleSup">---</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">λ</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Re-Susceptible rate \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(1/3-1/4) month<span class="elsevierStyleSup">-1</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleSup">---</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">k</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Pathogen dependent parameter \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.19<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">4</span> – 7.28<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">5</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><a class="elsevierStyleCrossRef" href="#bb0110"><span class="elsevierStyleSup">22</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">S</span><span class="elsevierStyleInf">0</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Initial value of susceptible (80% people of the total population of USA) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">331002647 × 0.8 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><a class="elsevierStyleCrossRef" href="#bb0160"><span class="elsevierStyleSup">32</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">N</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Total population (USA) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">331002647 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><a class="elsevierStyleCrossRef" href="#bb0160"><span class="elsevierStyleSup">32</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">ρ</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Population density (USA) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">35.608 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><a class="elsevierStyleCrossRef" href="#bb0160"><span class="elsevierStyleSup">32</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3441911.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="sp0035" class="elsevierStyleSimplePara elsevierViewall">Definitions and under suitable selection of the model parameters.</p>" ] ] 7 => array:8 [ "identificador" => "t0015" "etiqueta" => "Table 3" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "al0040" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Vaccine’s Name \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Effectivity \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">References \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Pfizer and BioNTech \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">95 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><a class="elsevierStyleCrossRef" href="#bb0180"><span class="elsevierStyleSup">36</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Moderna \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">94.1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><a class="elsevierStyleCrossRef" href="#bb0180"><span class="elsevierStyleSup">36</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Sinovac \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">78.1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><a class="elsevierStyleCrossRef" href="#bb0185"><span class="elsevierStyleSup">37</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Oxford-AstraZeneca \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">74.6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><a class="elsevierStyleCrossRef" href="#bb0180"><span class="elsevierStyleSup">36</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Spotnic V \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">91.6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><a class="elsevierStyleCrossRef" href="#bb0190"><span class="elsevierStyleSup">38</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Jonson & Jonson \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">72 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><a class="elsevierStyleCrossRef" href="#bb0180"><span class="elsevierStyleSup">36</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Novavax \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">96.4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><a class="elsevierStyleCrossRef" href="#bb0180"><span class="elsevierStyleSup">36</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3441912.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="sp0040" class="elsevierStyleSimplePara elsevierViewall">Effectivity of the several vaccines of COVID-19.</p>" ] ] 8 => array:8 [ "identificador" => "t0020" "etiqueta" => "Table 4" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "al0045" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Country \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Total population \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Total vaccinated \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Population density(<span class="elsevierStyleItalic">ρ</span>) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">References \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">USA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">331002647 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">254779333 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">35.608 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowgroup " rowspan="15" align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><a class="elsevierStyleCrossRef" href="#bb0160"><span class="elsevierStyleSup">32</span></a></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">UK \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">67886004 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">52433184 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">272.898 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Brazil \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">212559409 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">46875460 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">25.04 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">India \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1380004385 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">165190000 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">450.419 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Russia \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">145934460 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">21296747 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8.823 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">South Africa \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">59308690 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">381171 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">46.754 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Mexico \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">128932753 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">21008618 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">66.444 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Peru \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">32971846 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1939155 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">25.129 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Spain \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">46754783 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">19048132 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">93.105 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">France \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">65273512 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">25186918 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">122.578 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Iran \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">65273512 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1485287 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">49.831 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Italy \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">60461828 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23193606 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">205.859 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Germany \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">83783945 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">34408840 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">237.016 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Colombia \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">50882884 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5220330 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">44.223 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Chile \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">19116209 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15703842 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">24.282 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3441909.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="sp0045" class="elsevierStyleSimplePara elsevierViewall">Total population, total vaccinated and population density till May 7, 2021.</p>" ] ] 9 => array:6 [ "identificador" => "fo0005" "etiqueta" => "(1)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "S′=M−βcNSQ−εS+λR" "Fichero" => "STRIPIN_si1.jpeg" "Tamanyo" => 172 "Alto" => 15 "Ancho" => 169 ] ] 10 => array:6 [ "identificador" => "fo0010" "etiqueta" => "(2)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "E′=βcNSQ−γE" "Fichero" => "STRIPIN_si2.jpeg" "Tamanyo" => 168 "Alto" => 15 "Ancho" => 108 ] ] 11 => array:6 [ "identificador" => "fo0015" "etiqueta" => "(3)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "I′=pγE−μ1I−αI" "Fichero" => "STRIPIN_si3.jpeg" "Tamanyo" => 169 "Alto" => 13 "Ancho" => 122 ] ] 12 => array:6 [ "identificador" => "fo0020" "etiqueta" => "(4)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "A′=1−pγE−ηA−δA" "Fichero" => "STRIPIN_si4.jpeg" "Tamanyo" => 171 "Alto" => 14 "Ancho" => 156 ] ] 13 => array:6 [ "identificador" => "fo0025" "etiqueta" => "(5)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "T′=αI+ηA−σT−μ2T" "Fichero" => "STRIPIN_si5.jpeg" "Tamanyo" => 171 "Alto" => 13 "Ancho" => 155 ] ] 14 => array:6 [ "identificador" => "fo0030" "etiqueta" => "(6)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Sv′=Mv+εS−βvcNSvQ−πnSv" "Fichero" => "STRIPIN_si6.jpeg" "Tamanyo" => 174 "Alto" => 15 "Ancho" => 207 ] ] 15 => array:6 [ "identificador" => "fo0035" "etiqueta" => "(7)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Ev′=1−πnβvcNSvQ−γvEv" "Fichero" => "STRIPIN_si7.jpeg" "Tamanyo" => 173 "Alto" => 15 "Ancho" => 190 ] ] 16 => array:6 [ "identificador" => "fo0040" "etiqueta" => "(8)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Iv′=pvγvEv−μv1Iv−αvIv" "Fichero" => "STRIPIN_si8.jpeg" "Tamanyo" => 171 "Alto" => 14 "Ancho" => 157 ] ] 17 => array:6 [ "identificador" => "fo0045" "etiqueta" => "(9)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Av′=1−pvγvEv−ηvAv−δvAv" "Fichero" => "STRIPIN_si9.jpeg" "Tamanyo" => 173 "Alto" => 14 "Ancho" => 195 ] ] 18 => array:6 [ "identificador" => "fo0050" "etiqueta" => "(10)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Tv′=αvIv+ηvAv−σvTv−μv2Tv" "Fichero" => "STRIPIN_si10.jpeg" "Tamanyo" => 173 "Alto" => 14 "Ancho" => 192 ] ] 19 => array:6 [ "identificador" => "fo0055" "etiqueta" => "(11)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "R′=δA+σT+δvAv+σvTv−λR" "Fichero" => "STRIPIN_si11.jpeg" "Tamanyo" => 174 "Alto" => 12 "Ancho" => 203 ] ] 20 => array:6 [ "identificador" => "fo0060" "etiqueta" => "(12)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Sv0=εS0=εnS0,Ev0=Ev0,Iv0=Iv0,Av0=Av0,Tv0=Tv0." "Fichero" => "STRIPIN_si12.jpeg" "Tamanyo" => 191 "Alto" => 14 "Ancho" => 480 ] ] 21 => array:5 [ "identificador" => "fo0065" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "σ≤σv,δ≤δv." "Fichero" => "STRIPIN_si19.jpeg" "Tamanyo" => 167 "Alto" => 12 "Ancho" => 98 ] ] 22 => array:5 [ "identificador" => "fo0070" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "ρv1=ξ8ρ1,ρv2=ξ9ρ2" "Fichero" => "STRIPIN_si20.jpeg" "Tamanyo" => 170 "Alto" => 12 "Ancho" => 138 ] ] 23 => array:5 [ "identificador" => "fo0075" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "∫0tRsds=δλ1−pγη+δμ1+αpγ+σλασ+μ2+ησ+μ21−pγη+δμ1+αpγ∫0tIsds+δλ1−pγη+δ1pγ+σλασ+μ2ησ+μ21−pγη+δ1pγIt−I0−δλ1η+δ+σλησ+μ21η+δAt−A0−σλ1σ+μ2Tt−T0+δvλ1−pvγvηv+δvμv1+αvpvγv+σvλ(αvσv+μv2+ηvσv+μv21−pvγvηv+δvμv1+αvpvγv∫0tIvsds+δvλ1−pvγvηv+δv1pvγv+σvληvσv+μv21−pvγvηv+δv1pvγvIvt−Iv0−δvλ1ηv+δv+σvληvσv+μv21ηv+δvAvt−Av0−σvλ1σv+μv2Tvt−Tv0−1λRt−R0." "Fichero" => "STRIPIN_si21.jpeg" "Tamanyo" => 528 "Alto" => 234 "Ancho" => 389 ] ] 24 => array:5 [ "identificador" => "fo0080" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Ω1=∫0tIsds" "Fichero" => "STRIPIN_si22.jpeg" "Tamanyo" => 174 "Alto" => 35 "Ancho" => 83 ] ] 25 => array:5 [ "identificador" => "fo0085" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Ω2=∫0tIvsds" "Fichero" => "STRIPIN_si23.jpeg" "Tamanyo" => 174 "Alto" => 35 "Ancho" => 88 ] ] 26 => array:6 [ "identificador" => "fo0090" "etiqueta" => "(13)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "S′+E′=M−εS+λR−γE" "Fichero" => "STRIPIN_si24.jpeg" "Tamanyo" => 172 "Alto" => 13 "Ancho" => 177 ] ] 27 => array:6 [ "identificador" => "fo0095" "etiqueta" => "(14)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "∫0tEsds=μ1+αpγ∫0tIsds+1pγIt−I0" "Fichero" => "STRIPIN_si25.jpeg" "Tamanyo" => 202 "Alto" => 35 "Ancho" => 262 ] ] 28 => array:6 [ "identificador" => "fo0100" "etiqueta" => "(15)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "∫0tSsds=Mεt+λε∫0tRsds−μ1+αpε∫0tIsds−1pεIt−I0−1εSt−S0−1εEt−E0" "Fichero" => "STRIPIN_si26.jpeg" "Tamanyo" => 287 "Alto" => 99 "Ancho" => 311 ] ] 29 => array:6 [ "identificador" => "fo0105" "etiqueta" => "(16)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "A∫0tAsds=1−pγη+δμ1+αpγ∫0tIsds+1−pγη+δ1pγIt−I0)−1η+δAt−A0" "Fichero" => "STRIPIN_si27.jpeg" "Tamanyo" => 237 "Alto" => 35 "Ancho" => 483 ] ] 30 => array:6 [ "identificador" => "fo0110" "etiqueta" => "(17)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "∫0tTsds=ασ+μ2+ησ+μ21−pγη+δμ1+αpγ∫0tIsds+ησ+μ21−pγη+δ1pγIt−I0−ησ+μ21η+δAt−A0−1σ+μ2Tt−T0" "Fichero" => "STRIPIN_si28.jpeg" "Tamanyo" => 265 "Alto" => 88 "Ancho" => 298 ] ] 31 => array:6 [ "identificador" => "fo0115" "etiqueta" => "(18)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "∫0tEvsds=μv1+αvpvγv∫0tIvsds+1pvγvIvt−Iv0" "Fichero" => "STRIPIN_si29.jpeg" "Tamanyo" => 207 "Alto" => 35 "Ancho" => 295 ] ] 32 => array:6 [ "identificador" => "fo0120" "etiqueta" => "(19)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "∫0tAvsds=1−pvγvηv+δvμv1+αvpvγv∫0tIvsds+1−pvγvηv+δv1pvγvIvt−Iv0−1ηv+δvAvt−Av0" "Fichero" => "STRIPIN_si30.jpeg" "Tamanyo" => 243 "Alto" => 35 "Ancho" => 526 ] ] 33 => array:6 [ "identificador" => "fo0125" "etiqueta" => "(20)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "∫0tTvsds=αvσv+μv2+ηvσv+μv21−pvγvηv+δvμv1+αvpvγv∫0tIvsds+ηvσv+μv21−pvγvηv+δv1pvγvIvt−Iv0−ηvσv+μv21ηv+δvAvt−Av0−1σv+μv2Tvt−Tv0" "Fichero" => "STRIPIN_si31.jpeg" "Tamanyo" => 318 "Alto" => 113 "Ancho" => 335 ] ] 34 => array:5 [ "identificador" => "fo0130" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Rt−R0=δ∫0tAsds+σ∫0tTsds+δv∫0tAvsds+σv∫0tTvsds−λ∫0tRsds" "Fichero" => "STRIPIN_si32.jpeg" "Tamanyo" => 236 "Alto" => 35 "Ancho" => 477 ] ] 35 => array:6 [ "identificador" => "fo0135" "etiqueta" => "(21)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "∫0tRsds=δλ1−pγη+δμ1+αpγ+σλασ+μ2+ησ+μ21−pγη+δμ1+αpγ∫0tIsds+δλ1−pγη+δ1pγ+σλασ+μ2ησ+μ21−pγη+δ1pγIt−I0−δλ1η+δ+σλησ+μ21η+δAt−A0−σλ1σ+μ2Tt−T0+δvλ1−pvγvηv+δvμv1+αvpvγv+σvλ(αvσv+μv2+ηvσv+μv21−pvγvηv+δvμv1+αvpvγv∫0tIvsds+δvλ1−pvγvηv+δv1pvγv+σvληvσv+μv21−pvγvηv+δv1pvγvIvt−Iv0−δvλ1ηv+δv+σvληvσv+μv21ηv+δvAvt−Av0−σvλ1σv+μv2Tvt−Tv0−1λRt−R0" "Fichero" => "STRIPIN_si33.jpeg" "Tamanyo" => 536 "Alto" => 234 "Ancho" => 393 ] ] 36 => array:5 [ "identificador" => "fo0140" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "F=0βcNS0βcNρ1S0βcNρ2S00βcNS0βcNρv1S0βcNρv2S000000000000000000000000001−πnβvcNSv01−πnβvcNρ1Sv01−πnβvcNρ2Sv001−πnβvcNSv01−πnβvcNρv1Sv01−πnβvcNρv2Sv0000000000000000000000000" "Fichero" => "STRIPIN_si35.jpeg" "Tamanyo" => 749 "Alto" => 171 "Ancho" => 855 ] ] 37 => array:5 [ "identificador" => "fo0145" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "V=γ0000000−pγμ1+α000000−1−pγ0η+δ000000−α−ησ+μ200000000γv0000000−pvγvμv1+αv000000−1−pvγv0ηv+δv000000−αv−ηvσv+μv2" "Fichero" => "STRIPIN_si36.jpeg" "Tamanyo" => 455 "Alto" => 150 "Ancho" => 494 ] ] 38 => array:6 [ "identificador" => "fo0150" "etiqueta" => "(22)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Rc=1−εRu+εRv" "Fichero" => "STRIPIN_si37.jpeg" "Tamanyo" => 169 "Alto" => 14 "Ancho" => 132 ] ] 39 => array:5 [ "identificador" => "fo0155" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Ru=S0βcNpα+μ1+ρ11−pδ+η+ρ2ημ11−p+αη+δpδ+ηα+μ1μ2+σ=R0" "Fichero" => "STRIPIN_si38.jpeg" "Tamanyo" => 192 "Alto" => 24 "Ancho" => 331 ] ] 40 => array:5 [ "identificador" => "fo0160" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Rv=1−πnSv0βvcNpvαv+μv1+ρv11−pvδv+ηv+ρv2ηvμv11−pv+αvηv+δvpvδv+ηvαv+μv1μv2+σv" "Fichero" => "STRIPIN_si39.jpeg" "Tamanyo" => 199 "Alto" => 24 "Ancho" => 408 ] ] 41 => array:6 [ "identificador" => "fo0165" "etiqueta" => "(23)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "pd=1−e−dk" "Fichero" => "STRIPIN_si44.jpeg" "Tamanyo" => 169 "Alto" => 17 "Ancho" => 88 ] ] 42 => array:6 [ "identificador" => "fo0170" "etiqueta" => "(24)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "β=c0ρp" "Fichero" => "STRIPIN_si46.jpeg" "Tamanyo" => 164 "Alto" => 13 "Ancho" => 54 ] ] 43 => array:6 [ "identificador" => "fo0175" "etiqueta" => "(25)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "β=c0ρ1−e−dk" "Fichero" => "STRIPIN_si47.jpeg" "Tamanyo" => 171 "Alto" => 24 "Ancho" => 106 ] ] 44 => array:6 [ "identificador" => "fo0180" "etiqueta" => "(26)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Vc=Rc−1Rc=1−1Rc" "Fichero" => "STRIPIN_si48.jpeg" "Tamanyo" => 173 "Alto" => 20 "Ancho" => 127 ] ] 45 => array:6 [ "identificador" => "fo0185" "etiqueta" => "(27)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Vc≥1−Rc−11−1−r1−s" "Fichero" => "STRIPIN_si51.jpeg" "Tamanyo" => 170 "Alto" => 22 "Ancho" => 97 ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bs0005" "bibliografiaReferencia" => array:38 [ 0 => array:3 [ "identificador" => "bb0005" "etiqueta" => "[1]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effective reproductive number estimation for initial stage of COVID-19 pandemic in Latin American Countries" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "Y.C. Ochoa" 1 => "D.E.R. Sánchez" 2 => "M.P. Rallón" 3 => "H.F. Cortés-Motta" 4 => "Y.R. Méndez-Fandiño" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ijid.2020.04.069" "Revista" => array:6 [ "tituloSerie" => "Int J Infect Dis" "fecha" => "2020" "volumen" => "95" "paginaInicial" => "316" "paginaFinal" => "318" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32360941" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bb0010" "etiqueta" => "[2]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Prediction of the epidemic peak of CoronavirusDisease in Japan" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "T. Kuniya" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3390/jcm9030789" "Revista" => array:5 [ "tituloSerie" => "J Clin Med" "fecha" => "2020" "volumen" => "9" "paginaInicial" => "789" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32183172" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bb0015" "etiqueta" => "[3]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mathematical models for COVID-19: applications, limitations, andpotentials" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "J. Wang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.21037/jphe-2020-05" "Revista" => array:5 [ "tituloSerie" => "J Public Health Emerg" "fecha" => "2020" "volumen" => "4" "paginaInicial" => "9" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32724894" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bb0020" "etiqueta" => "[4]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Dynamics of transmission and control of COVID-19: A real-time estimation using the Kalman filter, Central Bank of Chile" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A.F. Marioli" 1 => "F. Bullano" 2 => "C.R. Moreno" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1101/2020.04.19.20071886v1" "Libro" => array:1 [ "fecha" => "2020" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bb0025" "etiqueta" => "[5]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Bayesian estimation of the dynamics of pandemic (H1N1) 2009 influenza transmission in Queensland: A space–time SIR-based model" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "X. Huang" 1 => "A.C. Clements" 2 => "G. Williams" 3 => "K. Mengersen" 4 => "S. Tong" 5 => "W. Hu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.envres.2016.01.013" "Revista" => array:6 [ "tituloSerie" => "Environ Res" "fecha" => "2016" "volumen" => "146" "paginaInicial" => "308" "paginaFinal" => "314" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26799511" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bb0030" "etiqueta" => "[6]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Estimation of time varying reproduction numbers underlying epidemiological processes: A new statistical tool for the COVID-19 pandemic" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "H.G. Hong" 1 => "Y. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal. pone.0236464" "Revista" => array:4 [ "tituloSerie" => "PLoS One" "fecha" => "2020" "volumen" => "15" "numero" => "7" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bb0035" "etiqueta" => "[7]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Replicating and Projecting the Path of COVID-19 with a Model Implied Reproduction Number" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "S.R. Buckman" 1 => "R. Glick" 2 => "K.J. Lansing" 3 => "N.P.N. Nadeau" 4 => "L.M. Seitelman" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.24148/wp2020-24" "Libro" => array:2 [ "fecha" => "2020" "paginaInicial" => "24" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bb0040" "etiqueta" => "[8]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Trends of 2019-nCoV in south Asian countries and prediction of the epidemic peaks" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A. Malek" 1 => "A. Hoque" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.virusres.2020.198230" "Revista" => array:5 [ "tituloSerie" => "Virus Res" "fecha" => "2021" "volumen" => "292" "paginaInicial" => "198230" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33197471" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bb0045" "etiqueta" => "[9]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Investigating the impact of asymptomatic carriers on COVID-19 transmission" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "J.B. Aguilar" 1 => "J.S. Faust" 2 => "L.M. Westafer" 3 => "J.B. Gutierrez" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:3 [ "tituloSerie" => "medRxiv" "fecha" => "2020" "paginaInicial" => "20037994" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bb0050" "etiqueta" => "[10]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A mathematical model of COVID-19 with vaccination and treatment" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M.L. Diagne" 1 => "H. Rwezaura" 2 => "S.Y. Tchoumi" 3 => "J.M. Tchuenche" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1155/2021/1250129" "Revista" => array:2 [ "tituloSerie" => "Comput Math Meth Med" "fecha" => "2021" ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bb0055" "etiqueta" => "[11]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mathematical models of vaccination" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A. Scherer" 1 => "A. Mclean" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/bmb/62.1.187" "Revista" => array:6 [ "tituloSerie" => "Br Med Bull" "fecha" => "2002" "volumen" => "62" "paginaInicial" => "187" "paginaFinal" => "199" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12176860" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bb0060" "etiqueta" => "[12]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Estimation of measles vaccine efficacy and critical vaccination coverage in a highly vaccinated population" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "W.V. Boven" 1 => "M. Kretzschmar" 2 => "J. Wallinga" 3 => "P.D. O’Neill" 4 => "O. Wichmann" 5 => "S. Hahne" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1098/rsif.2010.0086" "Revista" => array:6 [ "tituloSerie" => "J R Soc Interface" "fecha" => "2010" "volumen" => "7" "paginaInicial" => "1537" "paginaFinal" => "1544" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20392713" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bb0065" "etiqueta" => "[13]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Determination of an Optimal Control Strategy for Vaccine Administration in COVID-19 Pandemic Treatment" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "G.B. Libottea" 1 => "F.S. Lobatob" 2 => "G.M. Plattc" 3 => "A.J.S. Neto" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:1 [ "fecha" => "2020" ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bb0070" "etiqueta" => "[14]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Modelling optimal vaccination strategy for SARS-CoV-2in the UK. 2020" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "S. Moore" 1 => "E.M. Hill" 2 => "L. Dyson" 3 => "M.J. Tildesley" 4 => "M.J. Keeling" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pcbi.1008849" "Revista" => array:4 [ "tituloSerie" => "PLoSComputBiol" "fecha" => "2021" "volumen" => "17" "numero" => "5" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bb0075" "etiqueta" => "[15]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "COVID-19 optimal vaccination policies: A modeling study on efficacy, natural and vaccine-induced immunity responses" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M.A. Acuña-Zegarra" 1 => "S. Díaz-Infante" 2 => "D. Baca-Carrasco" 3 => "D. Olmos-Liceaga" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.mbs.2021.108614" "Revista" => array:5 [ "tituloSerie" => "Math Biosci" "fecha" => "2021" "volumen" => "337" "paginaInicial" => "108614" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33961878" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bb0080" "etiqueta" => "[16]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A mathematical model of COVID-19 with vaccination and treatment" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M.L. Diagne" 1 => "H. Rwezaura" 2 => "S.Y. Tchoumi" 3 => "J.M. Tchuenche" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1155/.2021/1250129" "Revista" => array:2 [ "tituloSerie" => "Comput Math Meth Med" "fecha" => "2021" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bb0085" "etiqueta" => "[17]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Optimal vaccination strategies using a distributed model applied to COVID-19" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "G. Angelov" 1 => "R. Kovacevic" 2 => "N.I. Stilianakis" 3 => "V.M. Veliov" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s10100-022-00819-z" "Revista" => array:6 [ "tituloSerie" => "CEJOR" "fecha" => "2023" "volumen" => "31" "paginaInicial" => "499" "paginaFinal" => "521" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/36105892" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bb0090" "etiqueta" => "[18]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vaccine optimization for COVID-19: Who to vaccinate first?" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "L. Matrajt" 1 => "J. Eaton" 2 => "T. Leung" 3 => "E.R. Brown" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1126/sciadv.abf1374" "Revista" => array:3 [ "tituloSerie" => "Sci Adv" "fecha" => "2021" "volumen" => "7" ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bb0095" "etiqueta" => "[19]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Quantitative Microbial Risk Assessment" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "C.N. Haas" 1 => "J.B. Rose" 2 => "C.P. Gerba" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1999" "editorial" => "John Wiley & Sons" "editorialLocalizacion" => "New York" ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bb0100" "etiqueta" => "[20]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Quantitative models of the dose-response and time course of inhalational anthrax in humans" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:10 [ 0 => "D.J.A. Toth" 1 => "A.V. Gundlapalli" 2 => "W.A. Schell" 3 => "K. Bulmahn" 4 => "T.E Walton" 5 => "C.W. Woods" 6 => "C. Coghill" 7 => "F. Gallegos" 8 => "M.H Samore" 9 => "F.R. Adler" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.ppat.1003555" "Revista" => array:4 [ "tituloSerie" => "PLoSPathog" "fecha" => "2013" "volumen" => "9" "paginaInicial" => "18" ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bb0105" "etiqueta" => "[21]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Development of a Dose-Response Modelfor SARS Coronavirus, Risk Analysis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "T. Watanabe" 1 => "T.A. Bartrand" 2 => "M.H. Weir" 3 => "T. Omura" 4 => "C.N. Haas" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:1 [ "fecha" => "2010" ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bb0110" "etiqueta" => "[22]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Deducing the dose-response relation for Coronaviruses from COVID-19,SARS and MERS meta-analysis results" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "X. Zhang" 1 => "J. Wang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1101/2020.06.26.20140624" "Revista" => array:2 [ "tituloSerie" => "medRxiv" "fecha" => "2020" ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bb0115" "etiqueta" => "[23]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:1 [ 0 => "D.K. Chu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/s0140- 6736(20)31142-9 (2020)" "Revista" => array:2 [ "tituloSerie" => "Lancet" "fecha" => "2020" ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bb0120" "etiqueta" => "[24]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Attitudes, acceptance and hesitancy among the general population worldwide to receive the COVID-19 vaccines and their contributing factors: a systematic review" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "F. Cascini" 1 => "A. Pantovic" 2 => "Y. Al-Ajlouni" 3 => "G. Failla" 4 => "W. Ricciardi" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.eclinm.2021.101113" "Revista" => array:5 [ "tituloSerie" => "EClinicalMedicine." "fecha" => "2021" "volumen" => "40" "paginaInicial" => "101113" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/34490416" "web" => "Medline" ] ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bb0125" "etiqueta" => "[25]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "On the definition and the computation of the basic reproduction ratio <span class="elsevierStyleItalic">R</span><span class="elsevierStyleInf">0</span>, in models for infectious diseases in heterogeneous populations" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "O. Diekmann" 1 => "J.A.P. Heesterbeek" 2 => "J.A.J. Metz" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1539-6924.2010.01427.x" "Revista" => array:7 [ "tituloSerie" => "J Math Biol" "fecha" => "1990" "volumen" => "28" "numero" => "4" "paginaInicial" => "365" "paginaFinal" => "382" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/2117040" "web" => "Medline" ] ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bb0130" "etiqueta" => "[26]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "P. van den Driessche" 1 => "J. Watmough" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/s0025-5564(02)00108-6" "Revista" => array:6 [ "tituloSerie" => "Math Biosci" "fecha" => "2002" "volumen" => "180" "paginaInicial" => "29" "paginaFinal" => "48" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12387915" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bb0135" "etiqueta" => "[27]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Pathogenicity of severe acute respiratory coronavirus deletion mutants in hACE-2 transgenic mice" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M.L. DeDiego" 1 => "L. Pewe" 2 => "E. Alvarez" 3 => "M.T. Rejas" 4 => "S. Perlman" 5 => "L. Enjuanes" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.virol.2008.03.005" "Revista" => array:5 [ "tituloSerie" => "Virology" "fecha" => "2008" "volumen" => "<span class="elsevierStyleBold">376</span>" "paginaInicial" => "379" "paginaFinal" => "389" ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bb0140" "etiqueta" => "[28]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Murine Hepatitis Virus Strain 1 produces a clinically relevant model of severe acute respiratory syndrome in A/J Mice" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:18 [ 0 => "N. De Albuquerque" 1 => "E. Baig" 2 => "X. Ma" 3 => "J. Zhang" 4 => "W. He" 5 => "A. Rowe" 6 => "M. Habal" 7 => "M. Liu" 8 => "I. Shalev" 9 => "G.P. Downey" 10 => "R. Gorczynski" 11 => "J. Butany" 12 => "J. Leibowitz" 13 => "S.R. Weiss" 14 => "I.D. McGilvray" 15 => "M.J. Phillips" 16 => "E.N. Fish" 17 => "G.A. Levy" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1128/jvi.00747-06" "Revista" => array:5 [ "tituloSerie" => "J Virol" "fecha" => "2006" "volumen" => "80" "paginaInicial" => "10382" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17041219" "web" => "Medline" ] ] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bb0145" "etiqueta" => "[29]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "KarimaNigmatulina, Philip Eckhoff, The scaling of contact rates with population density for the infectious disease models" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "H. Hu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.mbs.2013.04.013" "Revista" => array:6 [ "tituloSerie" => "Math Biosci" "fecha" => "2013" "volumen" => "244" "paginaInicial" => "125" "paginaFinal" => "134" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23665296" "web" => "Medline" ] ] ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bb0150" "etiqueta" => "[30]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Infectious Diseases of Humans: Dynamics and Control" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "R. Anderson" 1 => "R. May" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1991" "editorial" => "Oxford University Press" "editorialLocalizacion" => "Oxford" ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bb0155" "etiqueta" => "[31]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The estimation of the basic reproduction number for infectious diseases" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "K. Dietz" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1177/096228029300200103" "Revista" => array:6 [ "tituloSerie" => "Stat Methods Med Res" "fecha" => "1993" "volumen" => "2" "paginaInicial" => "23" "paginaFinal" => "41" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/8261248" "web" => "Medline" ] ] ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bb0160" "etiqueta" => "[32]" "referencia" => array:1 [ 0 => array:1 [ "host" => array:1 [ 0 => array:1 [ "WWW" => array:1 [ "link" => "https://github.com/owid/covid-19-data/tree/master/public/data" ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bb0165" "etiqueta" => "[33]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Data analysis and prediction of the COVID-19 outbreak in the first and second waves for top 5 affected countries in the world" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A. Hoque" 1 => "A. Malek" 2 => "AKMRA Zaman" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s11071-022-07473-9" "Revista" => array:5 [ "tituloSerie" => "Nonlin Dynam" "fecha" => "2022" "volumen" => "109" "paginaInicial" => "77" "paginaFinal" => "90" ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bb0170" "etiqueta" => "[34]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "S.A. Lauer" 1 => "K.H. Grantz" 2 => "Q. Bi" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.7326/M20-0504" "Revista" => array:7 [ "tituloSerie" => "Ann Intern Med" "fecha" => "2020" "volumen" => "172" "numero" => "9" "paginaInicial" => "577" "paginaFinal" => "582" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32150748" "web" => "Medline" ] ] ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bb0175" "etiqueta" => "[35]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Proportion of asymptomatic infection among COVID-19 positive persons and their transmission potential: A systematic review and meta-analysis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "M. Yanes-Lane" 1 => "N. Winters" 2 => "F. Fregonese" 3 => "M. Bastos" 4 => "S. Perlman-Arrow" 5 => "J.R. Campbell" 6 => "D. Menzies" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0241536" "Revista" => array:4 [ "tituloSerie" => "PLoS One" "fecha" => "2020" "volumen" => "15" "numero" => "11" ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bb0180" "etiqueta" => "[36]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Comparing the Covid-19 vaccines: how are they different" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "K. Katella" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "WWW" => array:2 [ "link" => "www.yalemedicine.org/new/covid-19-vaccine-comparisin" "fecha" => "May 7, 2021" ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bb0185" "etiqueta" => "[37]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sinopharm vaccine likely to get WHO approval with condition: experts" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "C. Sqi" 1 => "L. Shumei" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "WWW" => array:2 [ "link" => "www.globaltimes.cn/page/202105/1222824.shtml" "fecha" => "2021" ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bb0190" "etiqueta" => "[38]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Safety and efficacy of an rAd26 and rAd5 vector-basedheterologous prime-boost COVID-19 vaccine: an interimanalysis of a randomised controlled phase 3 trial in Russia" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "D.Y. Logunov" 1 => "I.V. Dolzhikova" 2 => "D.V. Shcheblyakov" 3 => "A.I. Tukhvatulin" 4 => "V. Olga" 5 => "O. Zubkova" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S0140-6736(21)00234-8" "Revista" => array:6 [ "tituloSerie" => "Lancet" "fecha" => "2021" "volumen" => "397" "paginaInicial" => "671" "paginaFinal" => "681" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33545094" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/24451460/0000002400000004/v2_202401230726/S2445146023000584/v2_202401230726/en/main.assets" "Apartado" => array:4 [ "identificador" => "71403" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Originals" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/24451460/0000002400000004/v2_202401230726/S2445146023000584/v2_202401230726/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2445146023000584?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 2 | 0 | 2 |
2024 October | 9 | 0 | 9 |
2024 September | 15 | 0 | 15 |
2024 August | 13 | 2 | 15 |
2024 July | 16 | 0 | 16 |
2024 June | 9 | 2 | 11 |
2024 May | 9 | 0 | 9 |
2024 April | 6 | 0 | 6 |
2024 March | 14 | 0 | 14 |
2024 February | 11 | 0 | 11 |
2024 January | 11 | 0 | 11 |
2023 December | 24 | 0 | 24 |
2023 November | 1 | 0 | 1 |