Fernando.Alvarez@sespa.princast.es
F. Álvarez-Guisasola. Centro de Salud La Calzada. Simón Bolívar, s/n. 33213 Gijón (Asturias).
se ha leído el artículo
array:23 [ "pii" => "S1134323010650089" "issn" => "11343230" "doi" => "10.1016/S1134-3230(10)65008-9" "estado" => "S300" "fechaPublicacion" => "2010-10-01" "aid" => "65008" "copyright" => "AVDIAB" "copyrightAnyo" => "2010" "documento" => "article" "crossmark" => 0 "subdocumento" => "fla" "cita" => "Av Diabetol. 2010;26:347-52" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 1429 "formatos" => array:3 [ "EPUB" => 28 "HTML" => 1001 "PDF" => 400 ] ] "itemSiguiente" => array:18 [ "pii" => "S1134323010650090" "issn" => "11343230" "doi" => "10.1016/S1134-3230(10)65009-0" "estado" => "S300" "fechaPublicacion" => "2010-10-01" "aid" => "65009" "copyright" => "AVDIAB" "documento" => "article" "crossmark" => 0 "subdocumento" => "fla" "cita" => "Av Diabetol. 2010;26:353-7" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 2926 "formatos" => array:3 [ "EPUB" => 40 "HTML" => 2287 "PDF" => 599 ] ] "es" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Artículo original</span>" "titulo" => "Evaluación neuropsicológica de la diabetes mellitus tipo 1 en la infancia" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "353" "paginaFinal" => "357" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Neuropsychological evaluation of type 1 diabetes mellitus in childhood" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "autores" => array:2 [ 0 => array:2 [ "autoresLista" => "M.L. López Fernández" "autores" => array:1 [ 0 => array:2 [ "nombre" => "M.L." "apellidos" => "López Fernández" ] ] ] 1 => array:2 [ "autoresLista" => "J.A. Portellano Pérez, R. Martínez Arias" "autores" => array:2 [ 0 => array:2 [ "nombre" => "J.A." "apellidos" => "Portellano Pérez" ] 1 => array:2 [ "nombre" => "R." "apellidos" => "Martínez Arias" ] ] ] ] ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1134323010650090?idApp=UINPBA00004N" "url" => "/11343230/0000002600000005/v1_201305021337/S1134323010650090/v1_201305021337/es/main.assets" ] "itemAnterior" => array:18 [ "pii" => "S1134323010650077" "issn" => "11343230" "doi" => "10.1016/S1134-3230(10)65007-7" "estado" => "S300" "fechaPublicacion" => "2010-10-01" "aid" => "65007" "copyright" => "AVDIAB" "documento" => "article" "crossmark" => 0 "subdocumento" => "fla" "cita" => "Av Diabetol. 2010;26:339-46" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 12197 "formatos" => array:3 [ "EPUB" => 59 "HTML" => 10817 "PDF" => 1321 ] ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Documento de expertos</span>" "titulo" => "Implementación de la estrategia basal plus en la práctica clínica" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "339" "paginaFinal" => "346" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Basal plus strategy implementation in clinical practice" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "f0005" "etiqueta" => "Figura 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 806 "Ancho" => 1374 "Tamanyo" => 102161 ] ] "descripcion" => array:1 [ "es" => "<p id="sp0005" class="elsevierStyleSimplePara elsevierViewall">Secuencia escalonada lógica en la Intensificación del tratamiento de la diabetes mellitus tipo 2 conforme progresa la enfermedad. Basal plus: insulina basal más análogo de insulina de acción rápida antes de la comida que provoca la mayor glucemia posprandial. Bolo basal: insulina basal más análogo de insulina de acción rápida antes de las tres comidas principales</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Á. Merchante Alfaro, J. García Soidán, F. Álvarez Guisasola, J.L. Bianchi Llave, F. Carral San Laureano, P. Checa Zornoza, F. Losada Viñau, A. Marco, A. Pérez-Lázaro, M. Pérez-Maraver, A. Yoldi Arrieta, C. Zafón Llopis, F.J. Ampudia-Blasco" "autores" => array:13 [ 0 => array:2 [ "nombre" => "Á." "apellidos" => "Merchante Alfaro" ] 1 => array:2 [ "nombre" => "J." "apellidos" => "García Soidán" ] 2 => array:2 [ "nombre" => "F." "apellidos" => "Álvarez Guisasola" ] 3 => array:2 [ "nombre" => "J.L." "apellidos" => "Bianchi Llave" ] 4 => array:2 [ "nombre" => "F." "apellidos" => "Carral San Laureano" ] 5 => array:2 [ "nombre" => "P." "apellidos" => "Checa Zornoza" ] 6 => array:2 [ "nombre" => "F." "apellidos" => "Losada Viñau" ] 7 => array:2 [ "nombre" => "A." "apellidos" => "Marco" ] 8 => array:2 [ "nombre" => "A." "apellidos" => "Pérez-Lázaro" ] 9 => array:2 [ "nombre" => "M." "apellidos" => "Pérez-Maraver" ] 10 => array:2 [ "nombre" => "A." "apellidos" => "Yoldi Arrieta" ] 11 => array:2 [ "nombre" => "C." "apellidos" => "Zafón Llopis" ] 12 => array:2 [ "nombre" => "F.J." "apellidos" => "Ampudia-Blasco" ] ] ] ] ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1134323010650077?idApp=UINPBA00004N" "url" => "/11343230/0000002600000005/v1_201305021337/S1134323010650077/v1_201305021337/es/main.assets" ] "es" => array:20 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Artículo original</span>" "titulo" => "Adding questions about cardiovascular risk factors improve the ability of the ADA questionnaire to identify unknown diabetic patients in Spain" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "347" "paginaFinal" => "352" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "F. Álvarez-Guisasola, I. Conget, J. Franch, M. Mata, J.J. Mediavilla, A. Sarria, J. Soler, E. Ramírez, C. García, L. Clerch" "autores" => array:10 [ 0 => array:4 [ "nombre" => "F." "apellidos" => "Álvarez-Guisasola" "email" => array:2 [ 0 => "falvarezg@papps.org" 1 => "Fernando.Alvarez@sespa.princast.es" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">1</span>" "identificador" => "af0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">†</span>" "identificador" => "cr0005" ] ] ] 1 => array:3 [ "nombre" => "I." "apellidos" => "Conget" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">2</span>" "identificador" => "af0010" ] ] ] 2 => array:3 [ "nombre" => "J." "apellidos" => "Franch" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">3</span>" "identificador" => "af0015" ] ] ] 3 => array:3 [ "nombre" => "M." "apellidos" => "Mata" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">4</span>" "identificador" => "af0020" ] ] ] 4 => array:3 [ "nombre" => "J.J." "apellidos" => "Mediavilla" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">5</span>" "identificador" => "af0025" ] ] ] 5 => array:3 [ "nombre" => "A." "apellidos" => "Sarria" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">6</span>" "identificador" => "af0030" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">7</span>" "identificador" => "af0035" ] ] ] 6 => array:3 [ "nombre" => "J." "apellidos" => "Soler" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">8</span>" "identificador" => "af0040" ] ] ] 7 => array:3 [ "nombre" => "E." "apellidos" => "Ramírez" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">9</span>" "identificador" => "af0045" ] ] ] 8 => array:3 [ "nombre" => "C." "apellidos" => "García" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">10</span>" "identificador" => "af0050" ] ] ] 9 => array:3 [ "nombre" => "L." "apellidos" => "Clerch" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">10</span>" "identificador" => "af0050" ] ] ] ] "afiliaciones" => array:10 [ 0 => array:3 [ "entidad" => "Centro de Salud La Calzada II. Gijón. Spanish Society of Family and Community Medicine." "etiqueta" => "<span class="elsevierStyleSup">1</span>" "identificador" => "af0005" ] 1 => array:3 [ "entidad" => "Hospital Clínico Universitario. Barcelona." "etiqueta" => "<span class="elsevierStyleSup">2</span>" "identificador" => "af0010" ] 2 => array:3 [ "entidad" => "Centro de Salud Raval Sud. Barcelona." "etiqueta" => "<span class="elsevierStyleSup">3</span>" "identificador" => "af0015" ] 3 => array:3 [ "entidad" => "Centro de Salud La Mina. Barcelona." "etiqueta" => "<span class="elsevierStyleSup">4</span>" "identificador" => "af0020" ] 4 => array:3 [ "entidad" => "Centro de Salud Pampliega. Burgos." "etiqueta" => "<span class="elsevierStyleSup">5</span>" "identificador" => "af0025" ] 5 => array:3 [ "entidad" => "Instituto de Salud Carlos III. Madrid." "etiqueta" => "<span class="elsevierStyleSup">6</span>" "identificador" => "af0030" ] 6 => array:3 [ "entidad" => "Universidad de Alcalá de Henares. Madrid." "etiqueta" => "<span class="elsevierStyleSup">7</span>" "identificador" => "af0035" ] 7 => array:3 [ "entidad" => "Hospital Universitario de Bellvitge. Barcelona." "etiqueta" => "<span class="elsevierStyleSup">8</span>" "identificador" => "af0040" ] 8 => array:3 [ "entidad" => "Infociencia S.L. Barcelona." "etiqueta" => "<span class="elsevierStyleSup">9</span>" "identificador" => "af0045" ] 9 => array:3 [ "entidad" => "Lácer, S.A. Barcelona" "etiqueta" => "<span class="elsevierStyleSup">10</span>" "identificador" => "af0050" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cr0005" "etiqueta" => "†" "correspondencia" => "F. Álvarez-Guisasola. Centro de Salud La Calzada. Simón Bolívar, s/n. 33213 Gijón (Asturias)." ] ] ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "f0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 745 "Ancho" => 1016 "Tamanyo" => 94022 ] ] "descripcion" => array:1 [ "es" => "<p id="sp0010" class="elsevierStyleSimplePara elsevierViewall">Receiver Operating Characteristics (ROC) curves representing performance of the three screening questionnaires: the American Diabetes Association (ADA), the final classical tree and the Artificial Intelligence (AI) tree. The area under the curve is a measure of text accuracy, showing the trade-off between sensitivity and specificity: an area of 1 represents a perfect test; an area of 0.5 represents a not significant test (rank: 0.90-1<span class="elsevierStyleHsp" style=""></span>= excellent; 0.80-0.90<span class="elsevierStyleHsp" style=""></span>= good; 0.70-0.80<span class="elsevierStyleHsp" style=""></span>= fair; 0.60-0.70<span class="elsevierStyleHsp" style=""></span>= poor; 0.50-0.60<span class="elsevierStyleHsp" style=""></span>= fail). The greater the area under the curve, the better the performance of the screening test</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="s0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0045">Introduction</span><p id="p0040" class="elsevierStylePara elsevierViewall">Type 2 diabetes mellitus affects above 10% of the Spanish population,<a class="elsevierStyleCrossRefs" href="#bb0005"><span class="elsevierStyleSup">1,2</span></a> a percentage that will grow due to increasing life expectancy and unhealthy habits. Moreover, due to the asymptomatic nature of type 2 diabetes, nearly 40% of diabetic patients ignore their condition until complications develop.<a class="elsevierStyleCrossRef" href="#bb0015"><span class="elsevierStyleSup">3</span></a> Hyperglycaemia detection is often recognized only after 5-12 years of evolution<a class="elsevierStyleCrossRef" href="#bb0020"><span class="elsevierStyleSup">4</span></a> and underdiagnosis results in micro or macro vascular complications in approximately 40% of cases.<a class="elsevierStyleCrossRef" href="#bb0020"><span class="elsevierStyleSup">4</span></a> Thus, an early detection and treatment would reduce the burden of diabetes complications.</p><p id="p0045" class="elsevierStylePara elsevierViewall">During the last years, screening methods for diabetes have been reviewed. American Diabetes Association (ADA)<a class="elsevierStyleCrossRef" href="#bb0025"><span class="elsevierStyleSup">5</span></a> recommends a screening of diabetes every 3 years in the population aged ><span class="elsevierStyleHsp" style=""></span>45 years, and even before and more frequently if there are other risk factors (overweight, hypertension, dyslipemia, first degree relatives with diabetes, history of gestational diabetes, etc.). The Spanish Society of Family and Community Medicine (SEMFYC)<a class="elsevierStyleCrossRef" href="#bb0030"><span class="elsevierStyleSup">6</span></a> follows similar criteria as those utilised by the ADA, but recommends <span class="elsevierStyleItalic">annual</span> screenings of diabetes, evaluating fasting plasma glucose in people with risk factors for diabetes.<a class="elsevierStyleCrossRef" href="#bb0035"><span class="elsevierStyleSup">7</span></a></p><p id="p0050" class="elsevierStylePara elsevierViewall">Although there is no conclusive evidence of the benefits of early detection and treatment of diabetes, patients at increased risk due to cardiovascular disease may benefit from screening. Such an integrated approach could reduce the risk for cardiovascular events. Also, it is crucial that an interpretation of the screening results is provided to the patient and that follow-up evaluation and treatment are made available.</p><p id="p0055" class="elsevierStylePara elsevierViewall">ADA validated a self-administered questionnaire for screening patients at risk of diabetes; this questionnaire is one of the simplest and more economic methods available nowadays.<a class="elsevierStyleCrossRef" href="#bb0025"><span class="elsevierStyleSup">5</span></a> However, when the ADA test is applied to the Spanish population, lower values of sensitivity and specificity have been found, compared with those obtained in the US population (sensitivity: 72.2%; specificity: 60.6%).<a class="elsevierStyleCrossRef" href="#bb0040"><span class="elsevierStyleSup">8</span></a> Currently, there are no specific questionnaires for the Spanish population to identify people at risk for undiagnosed diabetes. The aim of this study was to develop a screening tool targeted to Spanish ambulatory patients, which could provide higher sensitivity and specificity than the ADA test.</p></span><span id="s0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0050">Materials and methods</span><span id="s0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0055">Patients</span><p id="p0060" class="elsevierStylePara elsevierViewall">Written informed consent was obtained from all subjects following the recommendation of the Declaration of Helsinki, following approval by the ethic committee of the Hospital Clinic, Barcelona. Inclusion criteria were: a) ambulatory patients of Primary Care centres, aged ≥<span class="elsevierStyleHsp" style=""></span>45 years; b) patients needing a blood test, attending follow up protocols for chronic pathologies or periodic screening programs, and c) patients with signed informed consent. Exclusion criteria were: a) patients previously diagnosed with type 2 diabetes; b) pregnant patients; c) patients with mental or physical diseases that prevent them from giving consent; d) patients with unfavourable short-term prognosis (terminal patients), and e) patients taking medication that could interfere with the diabetes diagnosis (corticoids, diuretics, other hyperglycemic drugs, etc.).</p></span><span id="s0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0060">Design</span><p id="p0065" class="elsevierStylePara elsevierViewall">Epidemiological, transversal, multicentre, study, including 2,662 individuals older than 45 years, cared for in Primary Care centres in Spain. Ten patients who fulfilled all inclusion criteria and none of the exclusion criteria were enrolled during ten consecutive days (1 patient per day) by each investigator. The recruitment period lasted 3 months. Demographical variables and potential risk factors for diabetes were collected. In addition, a blood test was required for all patients to evaluate fasting plasma glucose, as well as cholesterol and triglycerides levels. A second blood test was done in order to confirm type 2 diabetes diagnosis in those patients that tested with impaired fasting glucose in the first test.</p></span><span id="s0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0065">Variables and potential risk factors</span><p id="p0070" class="elsevierStylePara elsevierViewall">The variables initially collected for the univariate analysis were: <span class="elsevierStyleItalic">gender</span> (qualitative: men vs. women); <span class="elsevierStyleItalic">age</span> (quantitative: global mean age; qualitative: rank 45-54 years vs. ><span class="elsevierStyleHsp" style=""></span>74 years, rank 55-64 years vs. ><span class="elsevierStyleHsp" style=""></span>74 years, rank 65-74 years vs. ><span class="elsevierStyleHsp" style=""></span>74 years, rank 45-64 years vs. ><span class="elsevierStyleHsp" style=""></span>64 years); <span class="elsevierStyleItalic">Body Mass Index (BMI)</span> (quantitative: global mean BMI in kg/m<span class="elsevierStyleSup">2</span>; qualitative levels: underweight & normal weight [BMI <<span class="elsevierStyleHsp" style=""></span>25<span class="elsevierStyleHsp" style=""></span>kg/m<span class="elsevierStyleSup">2</span>] vs. obese class III [BMI ≥<span class="elsevierStyleHsp" style=""></span>40<span class="elsevierStyleHsp" style=""></span>kg/ m<span class="elsevierStyleSup">2</span>], overweight [BMI ≥<span class="elsevierStyleHsp" style=""></span>25 and <<span class="elsevierStyleHsp" style=""></span>30<span class="elsevierStyleHsp" style=""></span>kg/m<span class="elsevierStyleSup">2</span>] vs. obese class III, obese class I [BMI ≥<span class="elsevierStyleHsp" style=""></span>30 and <<span class="elsevierStyleHsp" style=""></span>35<span class="elsevierStyleHsp" style=""></span>kg/m<span class="elsevierStyleSup">2</span>] vs. obese class III, obese class II [BMI ≥<span class="elsevierStyleHsp" style=""></span>35 and <<span class="elsevierStyleHsp" style=""></span>40<span class="elsevierStyleHsp" style=""></span>kg/m<span class="elsevierStyleSup">2</span>] vs. obese class III); <span class="elsevierStyleItalic">obesity</span> (qualitative: presence vs. absence); <span class="elsevierStyleItalic">abdominal perimeter</span> (quantitative: global mean in cm); <span class="elsevierStyleItalic">recent weight gain</span> (≥<span class="elsevierStyleHsp" style=""></span>10% in the last year) (qualitative: presence vs. absence). Risk factors for diabetes recorded as qualitative (presence vs. absence) were: previous impaired fasting glucose or glucose intolerance; history of gestational diabetes; macrosomic newborns; history of gestational diabetes or macrosomic newborns; first degree relatives with type 2 diabetes (parents, siblings or children); second degree relatives with type 2 diabetes; diagnosis or treatment for hypertension; diagnosis or treatment for lipid disorders; cardiovascular disease; polycystic ovarian syndrome; sedentary lifestyle and smoking habit. <span class="elsevierStyleItalic">Fruit and vegetable consumption</span> was also recorded as a qualitative factor, with two levels: <<span class="elsevierStyleHsp" style=""></span>1 time/week vs. daily, and ><span class="elsevierStyleHsp" style=""></span>1 time/week vs. daily.</p></span><span id="s0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0070">Blood tests</span><p id="p0075" class="elsevierStylePara elsevierViewall">Glucose levels were labelled as normal, impaired and type 2 diabetes, based on the following criteria: a) fasting plasma glucose in blood test 1: <<span class="elsevierStyleHsp" style=""></span>100, labelled as "normal"; ≥<span class="elsevierStyleHsp" style=""></span>200, named as "type 2 diabetes diagnosis"; and, ≥<span class="elsevierStyleHsp" style=""></span>100 and <<span class="elsevierStyleHsp" style=""></span>200, named as "abnormal". In this case, a second blood test was done; b) if fasting plasma glucose in blood test 1 & blood test 2: ≥<span class="elsevierStyleHsp" style=""></span>126, this condition was labelled as "type 2 diabetes diagnosis". The remained cases were considered as "impaired fasting glucose". Cases without a second blood test were not evaluated.</p><p id="p0080" class="elsevierStylePara elsevierViewall">All descriptive statistics were done using SAS® v 9.1 (SAS Institute, Cary, NC, USA).</p></span><span id="s0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0075">Decision tree construction</span><p id="p0085" class="elsevierStylePara elsevierViewall">A classification tree is an exploratory method used to study the relationship between a categorical dependent variable and a series of predictor variables. To identify groups at high risk of undiagnosed diabetes, we used both classical and Artificial Intelligence (AI) statistics to construct classification trees. During the tree construction process through classical statistics, the SAS® statistic software was used to select predictors for type 2 diabetes diagnosis. First, a univariate logistic regression analysis was performed with type 2 diabetes as a dependent variable, and the risk factors as predictors. Second, a multivariate logistic regression analysis was done including only predictor factors that were statistically significant in the univariate analysis.</p><p id="p0090" class="elsevierStylePara elsevierViewall">The construction of the classification trees was done using the function "tree" of the S-PLUS® 2000 (Insightful Corporation, Seattle, 2000) including the previous significant predictors in the model. Four trees were constructed, of which the last one showed the best sensitivity-specificity trade-off. S-PLUS uses repetition algorithms to contrast all possible classification trees, to select the order of questions that best classifies the individuals with the predicted variable (type 2 diabetes).<a class="elsevierStyleCrossRefs" href="#bb0045"><span class="elsevierStyleSup">9,10</span></a></p><p id="p0095" class="elsevierStylePara elsevierViewall">The Yale (Yet Another Learning Environment)<a class="elsevierStyleCrossRefs" href="#bb0055"><span class="elsevierStyleSup">11,12</span></a> v 3.0 software was used to construct the classification tree through AI methods. Predictors were obtained by means of a "Forward Selection" function. This function implies the selection of attributes through the application of an additive selection of variables by adding the variables ordered by Mutual Information and checking the predictive ability of each new group of variables. If the new added variable improves the prediction of the model, it is accepted. In the opposite case, it is rejected and the following variable of the list is checked. This iterative process is repeated until no more improvement is obtained.</p></span><span id="s0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0080">Receiver Operating Characteristic (ROC) curves</span><p id="p0100" class="elsevierStylePara elsevierViewall">The trees obtained through classical and AI techniques were compared to the ADA tree through the Receiver Operating Characteristic (ROC) curves,<a class="elsevierStyleCrossRefs" href="#bb0065"><span class="elsevierStyleSup">13,14</span></a> to select the best one according to sensitivity and specificity characteristics. These curves characterize the relationship between the true-positive ratio and the falsepositive ratio.</p></span></span><span id="s0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0085">Results</span><p id="p0105" class="elsevierStylePara elsevierViewall">The final sample was composed by 2,662 individuals, with a mean (SD) age of 61.7 (10.2) years (53% females, n<span class="elsevierStyleHsp" style=""></span>= 1,378). The 78.5% (n<span class="elsevierStyleHsp" style=""></span>= 2077) of the sample had overweight (BMI ≥<span class="elsevierStyleHsp" style=""></span>25<span class="elsevierStyleHsp" style=""></span>kg/m<span class="elsevierStyleSup">2</span>) and 18% (n<span class="elsevierStyleHsp" style=""></span>= 428) had gained weight during the last year. Significant factors for diabetes in the sample were: type 2 diabetes diagnosed in first-degree relatives (43.9% of cases, n<span class="elsevierStyleHsp" style=""></span>= 960), hypertension diagnosis (50.9%, n<span class="elsevierStyleHsp" style=""></span>= 1,343) and diagnosis or treatment for lipid disorders (47.3%, n<span class="elsevierStyleHsp" style=""></span>= 1,242) (<a class="elsevierStyleCrossRef" href="#t0005">table 1</a>).</p><elsevierMultimedia ident="t0005"></elsevierMultimedia><p id="p0110" class="elsevierStylePara elsevierViewall">Results of blood test 1 showed abnormal near-thresholds mean valúes in total cholesterol and LDL cholesterol levels (215.9 [37.6] mg/dL and 133.6 [34.5] mg/dL, respectively). The mean fasting plasma glucose level was 112.6 (34.4) mg/dL. The results of the blood test 2 showed glucose levels of 126.9 (33.6) mg/dL.</p><p id="p0115" class="elsevierStylePara elsevierViewall">Based on blood tests results; around half of the sample was classified within the group of normal glucose (52%, n<span class="elsevierStyleHsp" style=""></span>= 1,180), whereas 26% (n<span class="elsevierStyleHsp" style=""></span>= 587) of patients were classified as impaired fasting glucose. Conversely, type 2 diabetes was newly diagnosed in 23% (n<span class="elsevierStyleHsp" style=""></span>= 519) of patients.</p><p id="p0120" class="elsevierStylePara elsevierViewall">The best classification tree obtained through classical statistics included the following variables: weight gain during last year (prevalence of undetected diabetes 43.7%); men aged 45-64 years, without recent weight gain and without daily consumption of fruits and vegetables (20.2%); and people older than 64 years, with first degree diabetes history, without recent weight gain, but with daily fruit and vegetable consumption (21.4%). This tree identified a high-risk group of 206 people from a population of 968 that included 66 of the 206 cases of undiagnosed diabetes. The final tree showed a sensitivity of 85.2%, a specificity of 65.2%, and a positive and negative predictive value of 42.3% and 93.6%, respectively (<a class="elsevierStyleCrossRef" href="#t0010">table 2</a>).</p><elsevierMultimedia ident="t0010"></elsevierMultimedia><p id="p0125" class="elsevierStylePara elsevierViewall">The AI model tested through the "Forward Selection" method showed that individuals at higher risk for undiagnosed diabetes were those with previous impaired fasting glucose (49.8%); people without previous impaired fasting glucose, but who experienced weight gain during the last year (43.7%); people without previous impaired fasting glucose, without weight gain during the last year, but with a history of diabetes in first degree relatives, and who were smokers (31.6%); and those without previous impaired fasting glucose, without weight gain during the last year, with a history of diabetes in first degree relatives, nonsmokers, but with treatment for lipid disorders (15.6%) (<a class="elsevierStyleCrossRef" href="#f0005">figure 1</a>). This tree identified a high-risk group of 397 people from a population of 968 that included 177 of the 397 cases of undiagnosed diabetes. The model showed a sensitivity of 80.7%, a specificity of 70.9%, and a positive and negative predictive value of 45.3% and 92.5%, respectively.</p><elsevierMultimedia ident="f0005"></elsevierMultimedia><p id="p0130" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#f0010">Figure 2</a> illustrates the comparison of the three ROC curves representing the final classical statistic tree, the AI tree and the ADA tree. The area under the ROC curve was 0.53 for the ADA classification tree, 0.81 for the classical tree and 0.78 for the AI tree. Both classical and AI trees performed better than the ADA questionnaire, which showed good sensitivity (84.3%), but poor specificity (20.9%). Taking into account the trade-off between sensitivity and specificity, the AI model improved the specificity compared to the classical tree and the number of risk factors included in the model.</p><elsevierMultimedia ident="f0010"></elsevierMultimedia><p id="p0135" class="elsevierStylePara elsevierViewall">According to this model, people was in risk of diabetes if obtained at least 10 points in the sum of the following items: 10 points for fasting plasma glucose over 100<span class="elsevierStyleHsp" style=""></span>mg/dL, 10 points for over 10% of weight gain in the previous year, 6 points if diabetes is diagnosed in first degree relatives, 4 points if they smoke and 4 points if they are in treatment for lipid disorders.</p></span><span id="s0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0090">Discussion</span><p id="p0140" class="elsevierStylePara elsevierViewall">Up to day, there are no brief and cost-effective questionnaires, such as the ADA, adapted to the Spanish population. In the original evaluation of the ADA questionnaire, the sensitivity and specificity were 79% and 65%, respectively. In the present Spanish sample, ADA sensitivity was 84%, whereas the specificity was much lower than that observed in the original evaluation (21%).<a class="elsevierStyleCrossRef" href="#bb0025"><span class="elsevierStyleSup">5</span></a> This result is consistent with other evaluations done elsewhere. For instance, a study developed in Mexico revealed a sensitivity of 82% and a specificity of 48%<a class="elsevierStyleCrossRef" href="#bb0075"><span class="elsevierStyleSup">15</span></a> which supports the postulate that there is low reliability and validity of the Spanish version of the ADA tool in Latino populations.<a class="elsevierStyleCrossRef" href="#bb0080"><span class="elsevierStyleSup">16</span></a></p><p id="p0145" class="elsevierStylePara elsevierViewall">The characteristics of the original population in which the ADA questionnaire was validated and those of the sample studied here are quite different.<a class="elsevierStyleCrossRef" href="#bb0025"><span class="elsevierStyleSup">5</span></a> Additionally, some variables could have been under or overestimated as a result of very different lifestyles between Spain and the US, characterised by a high prevalence of obesity and consumption of an unbalanced diet. In addition, the influence of age and race explaining the presence/absence of diabetes in the original American study increases the prospect of a better diagnostic, when all ages and races are represented in the sample. In this regard, American minorities are more frequently affected by diabetes (i.e., the risk of diabetes for Mexican-Americans and non-Hispanic blacks seems to be almost twice than that for non-Hispanic whites). In addition, the American population included people ≥<span class="elsevierStyleHsp" style=""></span>20 year old (diabetes affects approximately 8% of adults of 20 years of age in the US, with rates reaching 19% for people older than 60). This relatively young age may explain the higher efficacy of the ADA test, as 3 out of 7 ADA questions include age as a predictive factor.</p><p id="p0150" class="elsevierStylePara elsevierViewall">In the questionnaire obtained through AI techniques, the specificity was improved by fifty percent, with 3.6% less sensitivity, compared to the ADA test. The only specific factor considered both in the ADA and in the AI test is the presence of diabetes in first degree relatives. Interestingly, the rates of abnormal glucose disorders in the general Spanish population have been previously related to those seen in their relatives with a history of diabetes mellitus.<a class="elsevierStyleCrossRef" href="#bb0085"><span class="elsevierStyleSup">17</span></a> The previous impaired fasting glucose, a factor with important health consequences,<a class="elsevierStyleCrossRef" href="#bb0090"><span class="elsevierStyleSup">18</span></a> is an intermediate stage which can lead to the development of type 2 diabetes. In fact, a study conducted in a Spanish population clearly demonstrates a relationship between the detection of the impaired fasting glucose and the diabetes diagnosis.<a class="elsevierStyleCrossRef" href="#bb0095"><span class="elsevierStyleSup">19</span></a> Thus, the prevalence of the impaired fasting glucose is higher than that observed for the diabetes diagnosis itself, in Spain.<a class="elsevierStyleCrossRef" href="#bb0100"><span class="elsevierStyleSup">20</span></a> This data corroborates that special attention and precocious detection focused on impaired fasting glucose should be addressed in undiagnosed diabetic patients.</p><p id="p0155" class="elsevierStylePara elsevierViewall">The questionnaire proposed in this study establishes three new factors not included in the ADA study. One of the factors is the smoking habit. In Spain, data from the last National Health Survey (year 2003)<a class="elsevierStyleCrossRef" href="#bb0105"><span class="elsevierStyleSup">21</span></a> pointed out that approximately 31% of the population ><span class="elsevierStyleHsp" style=""></span>16 year old smokes. Furthermore, the World Health Organisation (WHO) has estimated in a recent study about tobacco control in Europe that this percentage is one of the highest of the European Union,<a class="elsevierStyleCrossRef" href="#bb0110"><span class="elsevierStyleSup">22</span></a> and is higher than the US prevalence (<<span class="elsevierStyleHsp" style=""></span>18% of adults reporting to be daily smokers).<a class="elsevierStyleCrossRef" href="#bb0115"><span class="elsevierStyleSup">23</span></a> These data, together with the observed association between altered glycaemia levels, type 2 diabetes, and smoking<a class="elsevierStyleCrossRef" href="#bb0120"><span class="elsevierStyleSup">24</span></a> point out the potential of the smoking habit as a predictor in the detection of diabetes.</p><p id="p0160" class="elsevierStylePara elsevierViewall">The second factor included in the AI questionnaire is the treatment for lipid disorders. Lipid disorders, such as dyslipidemia or hypercholesterolemia, are common in diabetic patients.<a class="elsevierStyleCrossRef" href="#bb0125"><span class="elsevierStyleSup">25</span></a> In a descriptive study conducted in Spain about the degree of metabolic control in a population with type 2 diabetes (TranSTAR Study),<a class="elsevierStyleCrossRef" href="#bb0130"><span class="elsevierStyleSup">26</span></a> it was found that the proportion of subjects with history of dyslipidemia was higher in patients with type 2 diabetes (53.1% [CI 95%= 48.0-58.2]) than that observed in the control group (29.6% [CI 95%= 34.3-34.3]). Other studies support this higher prevalence of dyslipidemia and more freqüent use of statins in patients with type 2 diabetes.<a class="elsevierStyleCrossRefs" href="#bb0135"><span class="elsevierStyleSup">27,28</span></a></p><p id="p0165" class="elsevierStylePara elsevierViewall">Recent weight gain is an additional factor evaluated in the present test, and not directly included in the ADA test (even though obesity is included in the ADA questionnaire as a predictor factor). In the American population older than 45 years, a high prevalence of obesity, together with sedentary lifestyles has been reported as a widespread phenomenon.<a class="elsevierStyleCrossRefs" href="#bb0145"><span class="elsevierStyleSup">29,30</span></a> Unfortunately, this trend is also affecting the Spanish population, who is increasingly adopting typical US dietary patterns<a class="elsevierStyleCrossRef" href="#bb0155"><span class="elsevierStyleSup">31</span></a> and is not familiarized with factors influencing weight gain.<a class="elsevierStyleCrossRef" href="#bb0160"><span class="elsevierStyleSup">32</span></a> In this regard, recent weight gain may act as a prelude to develop weigh-related problems in the Mediterranean population, and thus can become a more trustworthy parameter reflecting current trends in Spain, in comparison with obesity itseThe new AI questionnaire includes more diabetes-related factors, compared to the ADA questionnaire which includes more limited factors associated to age, history of relatives and obesity. Age, gender, hypertension diagnosis and other risk factors for undiagnosed diabetes were not part of the model. This result, far from implying an intrinsic lack of predictive value, may reveal a limitation of our study, restricted to people older than 45 years. In this regard, the potential of "age" as a predictive factor was diminished. Likewise, hypertension is a condition frequently found within this group of age, and commonly associated with previous impaired fasting glucose, which again, contributes poorly to make hypertension a good predictor factor. Also, it could be interesting to analyze the information based on patient age segments size to assess the applicability of the questionnaire throughout the whole age range.</p><p id="p0170" class="elsevierStylePara elsevierViewall">Likewise, by analyzing the global population as a whole, differences in results between individuals with chronic pathologies from those following periodic screening programs could not be revealed. In summary, the present work proposes a new, brief, easy and accurate tool that may prove useful as part of a screening strategy for undiagnosed type 2 diabetes in the Spanish population older than 45 years. The new questionnaire shows similar sensitivity to the ADA test (as tested in the American population), but with a higher specificity of diabetes diagnosis, with only approximately 20% of individuals with undiagnosed diabetes missed by the screening. Smoking habit, treatment for lipid disorders and recent weight gain are three of the newly included factors that contribute to the 50% increment observed in the specificity of the ADA questionnaire in the Spanish population analysed here. These parameters may contribute to the higher accuracy obtained through the analyses by reflecting specific characteristics of the studied population. We propose these factors to be taken into consideration in the clinical practice when validating questionnaires, such as the ADA, at a regional scale.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:8 [ 0 => array:2 [ "identificador" => "xres108986" "titulo" => array:6 [ 0 => "Abstract" 1 => "Introduction:" 2 => "Objectives:" 3 => "Methods:" 4 => "Results:" 5 => "Conclusions:" ] ] 1 => array:2 [ "identificador" => "xpalclavsec96405" "titulo" => "Keywords" ] 2 => array:2 [ "identificador" => "s0005" "titulo" => "Introduction" ] 3 => array:3 [ "identificador" => "s0010" "titulo" => "Materials and methods" "secciones" => array:6 [ 0 => array:2 [ "identificador" => "s0015" "titulo" => "Patients" ] 1 => array:2 [ "identificador" => "s0020" "titulo" => "Design" ] 2 => array:2 [ "identificador" => "s0025" "titulo" => "Variables and potential risk factors" ] 3 => array:2 [ "identificador" => "s0030" "titulo" => "Blood tests" ] 4 => array:2 [ "identificador" => "s0035" "titulo" => "Decision tree construction" ] 5 => array:2 [ "identificador" => "s0040" "titulo" => "Receiver Operating Characteristic (ROC) curves" ] ] ] 4 => array:2 [ "identificador" => "s0045" "titulo" => "Results" ] 5 => array:2 [ "identificador" => "s0050" "titulo" => "Discussion" ] 6 => array:2 [ "identificador" => "xack36475" "titulo" => "Acknowledgements" ] 7 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2010-04-30" "fechaAceptado" => "2010-07-20" "PalabrasClave" => array:1 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec96405" "palabras" => array:3 [ 0 => "diabetes" 1 => "questionnaire" 2 => "Spain" ] ] ] ] "tieneResumen" => true "resumen" => array:1 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span class="elsevierStyleSectionTitle" id="st0010">Introduction:</span><p id="sp0030" class="elsevierStyleSimplePara elsevierViewall">Currently, there are not specific questionnaires for Spanish population to identify people at risk of undiagnosed diabetes. When American Diabetes Association (ADA) test is validated in the Spanish population, the sensitivity and specificity values obtained are lower than those found in the USA.</p> <span class="elsevierStyleSectionTitle" id="st0015">Objectives:</span><p id="sp0035" class="elsevierStyleSimplePara elsevierViewall">To develop a screening tool based on the ADA questionnaire, to prospectively identify undiagnosed type 2 diabetes in Spanish ambulatory patients.</p> <span class="elsevierStyleSectionTitle" id="st0020">Methods:</span><p id="sp0040" class="elsevierStyleSimplePara elsevierViewall">Epidemiological, transversal, multicentre study, including 2,662 ambulatory patients of Primary Care centres, mean age (SD) 61.7 (10.2) years (53% women), needing a blood test and attending follow-up protocols for chronic pathologies or periodic screening programs. Classification tree construction was achieved through classical and Artificial Intelligence (AI) methods. The sensitivity, specificity, and the positive and negative predictive values were described and compared with the ADA questionnaire.</p> <span class="elsevierStyleSectionTitle" id="st0025">Results:</span><p id="sp0045" class="elsevierStyleSimplePara elsevierViewall">The final selected classification tree included the following variables: previous impaired fasting glucose or glucose intolerance; recent weight gain; parents, siblings or children with diabetes; smoking habit and pharmacologic treatment for lipid disorders (sensitivity: 80.7%; specificity: 70.9%; positive predictive value: 45.3%; negative predictive value: 92.5%). This tree showed a better Receiver Operating Characteristic curve than that of the ADA test (sensitivity: 84.3%; specificity: 20.9%).</p> <span class="elsevierStyleSectionTitle" id="st0030">Conclusions:</span><p id="sp0050" class="elsevierStyleSimplePara elsevierViewall">The inclusion of questions regarding lipid disorders, smoking habit and weight gain increase the specificity of the ADA test to identify undiagnosed type 2 diabetes in Spanish patients older than 45 years.</p>" ] ] "nomenclatura" => array:1 [ 0 => array:2 [ "titulo" => "<span class="elsevierStyleSectionTitle" id="st0040">List of acronyms quoted in the text:</span>" "listaDefinicion" => array:1 [ 0 => array:1 [ "definicion" => array:7 [ 0 => array:2 [ "termino" => "ADA" "descripcion" => "<p id="p0005" class="elsevierStylePara elsevierViewall">American Diabetes Association</p>" ] 1 => array:2 [ "termino" => "AI" "descripcion" => "<p id="p0010" class="elsevierStylePara elsevierViewall">Artificial Intelligence</p>" ] 2 => array:2 [ "termino" => "SD" "descripcion" => "<p id="p0015" class="elsevierStylePara elsevierViewall">Standard Deviation</p>" ] 3 => array:2 [ "termino" => "semFYC" "descripcion" => "<p id="p0020" class="elsevierStylePara elsevierViewall">Spanish Society of Family and Community Medicine</p>" ] 4 => array:2 [ "termino" => "ROC" "descripcion" => "<p id="p0025" class="elsevierStylePara elsevierViewall">Receiver Operating Characteristic</p>" ] 5 => array:2 [ "termino" => "BMI" "descripcion" => "<p id="p0030" class="elsevierStylePara elsevierViewall">Body Mass Index</p>" ] 6 => array:2 [ "termino" => "LDL" "descripcion" => "<p id="p0035" class="elsevierStylePara elsevierViewall">Low Density Lipoprotein.</p>" ] ] ] ] ] ] "multimedia" => array:4 [ 0 => array:7 [ "identificador" => "f0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1292 "Ancho" => 1017 "Tamanyo" => 139895 ] ] "descripcion" => array:1 [ "es" => "<p id="sp0005" class="elsevierStyleSimplePara elsevierViewall">Classification tree of risk factors for undiagnosed diabetes incorporating the following factors: previous impaired fasting glucose, recent weight gain, parents, siblings or children with diabetes, smoking habit and treatment for lipid disorders. For each risk factor profile, the numerator represents the number of individuals with newly diagnosed diabetes and the denominator represents the total number within the risk factor profile. The doubleoval represents groups with a prevalence of undiagnosed diabetes ><span class="elsevierStyleHsp" style=""></span>15%</p>" ] ] 1 => array:7 [ "identificador" => "f0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 745 "Ancho" => 1016 "Tamanyo" => 94022 ] ] "descripcion" => array:1 [ "es" => "<p id="sp0010" class="elsevierStyleSimplePara elsevierViewall">Receiver Operating Characteristics (ROC) curves representing performance of the three screening questionnaires: the American Diabetes Association (ADA), the final classical tree and the Artificial Intelligence (AI) tree. The area under the curve is a measure of text accuracy, showing the trade-off between sensitivity and specificity: an area of 1 represents a perfect test; an area of 0.5 represents a not significant test (rank: 0.90-1<span class="elsevierStyleHsp" style=""></span>= excellent; 0.80-0.90<span class="elsevierStyleHsp" style=""></span>= good; 0.70-0.80<span class="elsevierStyleHsp" style=""></span>= fair; 0.60-0.70<span class="elsevierStyleHsp" style=""></span>= poor; 0.50-0.60<span class="elsevierStyleHsp" style=""></span>= fail). The greater the area under the curve, the better the performance of the screening test</p>" ] ] 2 => array:7 [ "identificador" => "t0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Age (mean [SD]; years) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">61.7 (10.2) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Gender (men; women) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">47%; 53% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Body Mass Index (BMI)</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Underweight & normal weight (BMI <<span class="elsevierStyleHsp" style=""></span>25<span class="elsevierStyleHsp" style=""></span>kg/m<span class="elsevierStyleSup">2</span>) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">21.5% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Overweight (BMI ≥<span class="elsevierStyleHsp" style=""></span>25-<30<span class="elsevierStyleHsp" style=""></span>kg/m<span class="elsevierStyleSup">2</span>) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">47.1% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Obese class I (BMI ≥<span class="elsevierStyleHsp" style=""></span>30-<35<span class="elsevierStyleHsp" style=""></span>kg/m<span class="elsevierStyleSup">2</span>) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23.9% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Obese class II (BMI ≥<span class="elsevierStyleHsp" style=""></span>35-<40<span class="elsevierStyleHsp" style=""></span>kg/m<span class="elsevierStyleSup">2</span>) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.0% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Obese class III (BMI ≥<span class="elsevierStyleHsp" style=""></span>40<span class="elsevierStyleHsp" style=""></span>kg/m<span class="elsevierStyleSup">2</span>) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.5% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Patients with recent weight gain (≥<span class="elsevierStyleHsp" style=""></span>10% in last year) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">18.0% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Abdominal perimeter (mean [SD]; cm) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">97 (15) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">History of impaired fasting glucose \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">30.4% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">History of gestational diabetes \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.7% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">At least one first-degree relative with type 2 diabetes \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">43.9% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Hypertension diagnosis \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">50.9% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Diagnosis or treatment for lipid disorders \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">47.3% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Diagnosis of cardiovascular disease \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">12.1% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Polycystic ovarian syndrome \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.9% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Fruit & vegetable consumption</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>1 time/week \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9.7% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>><span class="elsevierStyleHsp" style=""></span>1 time/week \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">34.5% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Daily \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">55.7% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Sedentary lifestyle</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Little or none physical activity \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">30.5% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>2-3 times/week \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">34.2% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Daily \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">35.3% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Smoking habit</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Never \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">58.8% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Ex-smoker \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">22.1% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Smoker \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">19.1% \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab196191.png" ] ] ] ] "descripcion" => array:1 [ "es" => "<p id="sp0015" class="elsevierStyleSimplePara elsevierViewall">Characteristics of the subjects and main potential risk factors observed in the population (N<span class="elsevierStyleHsp" style=""></span>= 2,662)</p>" ] ] 3 => array:7 [ "identificador" => "t0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:2 [ "leyenda" => "<p id="sp0025" class="elsevierStyleSimplePara elsevierViewall">ADA: American Diabetes Association; AI: Artificial Intelligence; ROC: Receiver Operating Characteristic.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ADA questionnaire \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Classical statistics tree \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AI tree \t\t\t\t\t\t\n \t\t\t\t</td></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Area under the curve ROC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.532 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.805 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.781 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Sensitivity \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">84.3% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">85.2% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold">80.7%</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Specificity \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">20.9% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">65.2% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold">70.9%</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Positive predictive value \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">24.2% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">42.3% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">45.3% \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Negative predictive value \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">81.7% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">93.6% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">92.5% \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab196192.png" ] ] ] ] "descripcion" => array:1 [ "es" => "<p id="sp0020" class="elsevierStyleSimplePara elsevierViewall">Comparison of the questionnaires</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bs0005" "bibliografiaReferencia" => array:32 [ 0 => array:3 [ "identificador" => "bb0005" "etiqueta" => "1." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Epidemiología de la diabetes y sus complicaciones no coronarias" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "A. Goday" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Rev Esp Cardiol" "fecha" => "2002" "volumen" => "55" "paginaInicial" => "657" "paginaFinal" => "670" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12113725" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bb0010" "etiqueta" => "2." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Prevalence of diabetes in Catalonia (Spain): an oral glucose tolerance test-based population study" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "C. Castell" 1 => "R. Tresserras" 2 => "J. Serra" 3 => "A. Goday" 4 => "G. Lloveras" 5 => "L. Salleras" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Diabetes Res Clin Pract" "fecha" => "1999" "volumen" => "43" "paginaInicial" => "33" "paginaFinal" => "40" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10199586" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bb0015" "etiqueta" => "3." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Prevalence and determinants of diabetes mellitus and glucose intolerance in a Canarian Caucasian population -comparison of the 1997 ADA and the 1985 WHO criteria" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "P.L. De Pablos-Velasco" 1 => "F.J. Martínez-Martín" 2 => "F. Rodríguez-Pérez" 3 => "B.J. Anía" 4 => "A. Losada" 5 => "P. Betancor" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "The Guia Study. Diabet Med" "fecha" => "2001" "volumen" => "18" "paginaInicial" => "235" "paginaFinal" => "241" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bb0020" "etiqueta" => "4." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Complications in newly diagnosed type 2 diabetic patients and their association with different clinical and biochemical risk factors" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "UK Prospective Diabetes Study 6" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Diabetes Res" "fecha" => "1990" "volumen" => "13" "paginaInicial" => "1" "paginaFinal" => "11" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/2097090" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bb0025" "etiqueta" => "5." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A new and simple questionnaire to identify people at increased risk for undiagnosed diabetes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "W.H. Herman" 1 => "P.J. Smith" 2 => "T.J. Thompson" 3 => "M.M. Engelgau" 4 => "R.E. Aubert" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Diabetes Care" "fecha" => "1995" "volumen" => "18" "paginaInicial" => "382" "paginaFinal" => "387" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/7555482" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bb0030" "etiqueta" => "6." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Criterios de cribado y diagnóstico de diabetes mellitus" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "P. Birules" 1 => "I. Fernández" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Aten Primaria" "fecha" => "2003" "volumen" => "31" "paginaInicial" => "334" "paginaFinal" => "336" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12681150" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bb0035" "etiqueta" => "7." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Guías Clínicas 2007. Diabetes Mellitus tipo 2" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "Grupo de Diabetes de la Asociación Galega de Medicina Familiar e Comunitaria (semFYC)" ] ] ] ] ] "host" => array:2 [ 0 => array:1 [ "Libro" => array:1 [ "fecha" => "2007" ] ] 1 => array:1 [ "WWW" => array:1 [ "link" => "http://www.fisterra.com/guias2/diabetes_mellitus.asp#Biblio" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bb0040" "etiqueta" => "8." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Detección de la diabetes mellitus en consultas externas hospitalarias. Utilidad de un cuestionario de cribado" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "A. Costa" 1 => "A. Yuri" 2 => "J. Sola" 3 => "I. Conget" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Med Clin (Barc)" "fecha" => "2003" "volumen" => "120" "paginaInicial" => "287" "paginaFinal" => "291" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bb0045" "etiqueta" => "9." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Classification and regression trees" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "L. Breiman" 1 => "J.H. Friedman" 2 => "R. Olshen" 3 => "C. Stone" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1984" "editorial" => "Wadsworth" "editorialLocalizacion" => "Belmont, CA" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bb0050" "etiqueta" => "10." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Empiric comparison of multivariate analytic techniques: advantages and disadvantages of recursive partitioning analysis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "E.F. Cook" 1 => "L. Goldman" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Chronic Dis" "fecha" => "1984" "volumen" => "37" "paginaInicial" => "721" "paginaFinal" => "731" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/6501544" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bb0055" "etiqueta" => "11." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "YALE: Rapid Prototyping for Complex Data Mining Tasks" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "I. Mierswa" 1 => "M. Wurst" 2 => "R. Klinkenberg" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:2 [ "conferencia" => "Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-06). Philadelphia" "serieFecha" => "August 2006" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bb0060" "etiqueta" => "12." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Yale: Yet Another Learning Environment: Collaborative Research Center 531" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "S. Fischer" 1 => "R. Klinkenberg" 2 => "I. Mierswa" 3 => "O. Ritthoff" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:2 [ "fecha" => "2002" "editorial" => "University of Dortmund" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bb0065" "etiqueta" => "13." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Principles and practical application of the receiveroperating characteristic analysis for diagnostic tests" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M. Greiner" 1 => "D. Pfeiffer" 2 => "R.D. Smith" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Prev Vet Med" "fecha" => "2000" "volumen" => "45" "paginaInicial" => "23" "paginaFinal" => "41" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10802332" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bb0070" "etiqueta" => "14." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "A. Linden" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1365-2753.2006.00683.x" "Revista" => array:6 [ "tituloSerie" => "J Eval Clin Pract" "fecha" => "2006" "volumen" => "12" "paginaInicial" => "121" "paginaFinal" => "123" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16579819" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bb0075" "etiqueta" => "15." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Utilidad de un cuestionario en la detección de individuos con riesgo de diabetes mellitus asintomática" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "C.A. Domínguez-Reyes" 1 => "A.S. Serrano Carrillo" 2 => "I. Lozano Soriano" 3 => "J.J. López Soto" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Rev Invest Clin" "fecha" => "1999" "volumen" => "51" "paginaInicial" => "175" "paginaFinal" => "182" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10466008" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bb0080" "etiqueta" => "16." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Validating the utility of the Spanish version of the American Diabetes Association Risk Test" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J. Long" 1 => "A. Rozo-Rivera" 2 => "T. Akers" 3 => "J.B. VanGeest" 4 => "A. Bairan" 5 => "K.J. Fogarty" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1177/1054773805285702" "Revista" => array:6 [ "tituloSerie" => "Clin Nurs Res" "fecha" => "2006" "volumen" => "15" "paginaInicial" => "107" "paginaFinal" => "118" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16638829" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bb0085" "etiqueta" => "17." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "High prevalence of abnormal glucose tolerance and metabolic disturbances in first degree relatives of NIDDM patients. A study in Catalonia, a mediterranean community" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "A. Costa" 1 => "M. Ríos" 2 => "R. Casamitjana" 3 => "R. Gomis" 4 => "I. Conget" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Diabetes Res Clin Pract" "fecha" => "1998" "volumen" => "41" "paginaInicial" => "191" "paginaFinal" => "196" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9829348" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bb0090" "etiqueta" => "18." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Impaired glucose tolerance and impaired fasting glycaemia: the current status on definition and intervention" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "N. Unwin" 1 => "J. Shaw" 2 => "P. Zimmet" 3 => "K.G. Alberti" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Diabet Med" "fecha" => "2002" "volumen" => "19" "paginaInicial" => "708" "paginaFinal" => "723" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12207806" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bb0095" "etiqueta" => "19." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Diabetes tipo 2. ¿Qué podemos esperar tras la adopción de los nuevos criterios diagnósticos? Incremento de la prevalencia de diabetes y diagnóstico precoz en la población atendida en un centro de salud" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M.P. Pérez Unanua" 1 => "P. Alonso Sacristán" 2 => "J.C. Roiz Fernández" 3 => "M.I. García Lázaro" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Medifam" "fecha" => "2002" "volumen" => "12" "paginaInicial" => "191" "paginaFinal" => "198" ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bb0100" "etiqueta" => "20." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Consignas para la prevención de la diabetes tipo 2 en atención primaria de salud" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "B. Costa" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "El dilema del estado prediabético. Aten Primaria" "fecha" => "2001" "volumen" => "28" "paginaInicial" => "193" "paginaFinal" => "200" ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bb0105" "etiqueta" => "21." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Encuesta Nacional de salud" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "Ministerio de Sanidad y Consumo" ] ] ] ] ] "host" => array:2 [ 0 => array:1 [ "Libro" => array:1 [ "fecha" => "2003" ] ] 1 => array:1 [ "WWW" => array:1 [ "link" => "http://www.msc.es/estadEstudios/estadisticas/encuestaNacional/home.htm" ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bb0110" "etiqueta" => "22." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The European Tobacco Control Report" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "World Health Organisation (WHO) Regional Office for Europe" ] ] ] ] ] "host" => array:2 [ 0 => array:1 [ "Libro" => array:1 [ "fecha" => "2007" ] ] 1 => array:1 [ "WWW" => array:1 [ "link" => "http://www.euro.who.int/document/e89842.pdf" ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bb0115" "etiqueta" => "23." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "OECD Health Data" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "Organisation for Economic Co-operation and Development (OECD)" ] ] ] ] ] "host" => array:2 [ 0 => array:1 [ "Libro" => array:1 [ "fecha" => "2006" ] ] 1 => array:1 [ "WWW" => array:1 [ "link" => "http://www.oecd.org/document/44/0,2340,en_2649_37407_2085228_1_1_1_37407,00.html" ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bb0120" "etiqueta" => "24." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Smoking cessation and risk of type 2 diabetes mellitus: Korea Medical Insurance Corporation Study" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "N.W. Hur" 1 => "H.C. Kim" 2 => "C.M. Nam" 3 => "S.H. Jee" 4 => "H.C. Lee" 5 => "I. Suh" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/01.hjr.0000239474.41379.79" "Revista" => array:6 [ "tituloSerie" => "Eur J Cardiovasc Prev Rehabil" "fecha" => "2007" "volumen" => "14" "paginaInicial" => "244" "paginaFinal" => "249" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17446803" "web" => "Medline" ] ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bb0125" "etiqueta" => "25." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Management of diabetic dyslipidemia" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "M. Del Pilar Solano" 1 => "R.B. Goldberg" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ecl.2005.01.001" "Revista" => array:6 [ "tituloSerie" => "Endocrinol Metab Clin North Am" "fecha" => "2005" "volumen" => "34" "paginaInicial" => "1" "paginaFinal" => "25" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15752919" "web" => "Medline" ] ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bb0130" "etiqueta" => "26." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Evaluación del cumplimiento de los objetivos de control metabólico de la diabetes tipo 2. Estudio TranSTAR" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "A. Goday" 1 => "H. de la Calle" 2 => "A. Costa" 3 => "J. Díez-Espino" 4 => "J. Franch" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Med Clin (Barc)" "fecha" => "2003" "volumen" => "120" "paginaInicial" => "446" "paginaFinal" => "450" ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bb0135" "etiqueta" => "27." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Comprehensive management of patients with type 2 diabetes: establishing priorities of care" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "D.M. Kendall" 1 => "R.M. Bergenstal" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Am J Manag Care" "fecha" => "2001" "volumen" => "7" "paginaInicial" => "S327" "paginaFinal" => "S343" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11519398" "web" => "Medline" ] ] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bb0140" "etiqueta" => "28." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Control de la dislipemia en pacientes diabéticos en Extremadura (studio COFRE)" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "N. Roberto Robles" 1 => "S. Barroso" 2 => "G. Marcos" 3 => "J.F. Sánchez Muñoz-Torrero" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S1575-0922(09)70840-X" "Revista" => array:6 [ "tituloSerie" => "Endocrinol Nutr" "fecha" => "2009" "volumen" => "56" "paginaInicial" => "112" "paginaFinal" => "117" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19627723" "web" => "Medline" ] ] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bb0145" "etiqueta" => "29." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Summary health statistics for U.S. adults: National Health Interview Survey, 2001" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "J.W. Lucas" 1 => "J.S. Schiller" 2 => "V. Benson" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Vital Health Stat 10" "fecha" => "2004" "volumen" => "218" "paginaInicial" => "1" "paginaFinal" => "134" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15791758" "web" => "Medline" ] ] ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bb0150" "etiqueta" => "30." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Physical activity patterns and obesity in Hispanic and non-Hispanic white women" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M.L. Slattery" 1 => "C. Sweeney" 2 => "S. Edwards" 3 => "J. Herrick" 4 => "M. Murtaugh" 5 => "K. Baumgartner" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Med Sci Sports Exerc" "fecha" => "2006" "volumen" => "38" "paginaInicial" => "33" "paginaFinal" => "41" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16394951" "web" => "Medline" ] ] ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bb0155" "etiqueta" => "31." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Predictors of weight gain in a Mediterranean cohort: the Seguimiento Universidad de Navarra Study 1" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M. Bes-Rastrollo" 1 => "A. Sánchez-Villegas" 2 => "E. Gómez-Gracia" 3 => "J.A. Martínez" 4 => "R.M. Pajares" 5 => "M.A. Martínez-González" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Am J Clin Nutr" "fecha" => "2006" "volumen" => "83" "paginaInicial" => "362" "paginaFinal" => "370" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16469996" "web" => "Medline" ] ] ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bb0160" "etiqueta" => "32." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Perceptions about body weight and weight reduction in Spain" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "M.A. Martínez-González" 1 => "M.I. Martín-Almendros" 2 => "M.J. Gibney" 3 => "J.M. Kearney" 4 => "J.A. Martínez" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Public Health Nutr" "fecha" => "1999" "volumen" => "2" "paginaInicial" => "4557" "paginaFinal" => "4563" ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:3 [ "identificador" => "xack36475" "titulo" => "Acknowledgements" "texto" => "<p id="p0175" class="elsevierStylePara elsevierViewall">We thank the patients and investigators who participated in the study. We also thank the contribution of Infociencia for assisting in the statistical analysis and editing of the manuscript. The DIADES study was supported by Lacer, S.A.</p>" ] ] ] "idiomaDefecto" => "es" "url" => "/11343230/0000002600000005/v1_201305021337/S1134323010650089/v1_201305021337/es/main.assets" "Apartado" => array:4 [ "identificador" => "5759" "tipo" => "SECCION" "es" => array:2 [ "titulo" => "Artículo original" "idiomaDefecto" => true ] "idiomaDefecto" => "es" ] "PDF" => "https://static.elsevier.es/multimedia/11343230/0000002600000005/v1_201305021337/S1134323010650089/v1_201305021337/es/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1134323010650089?idApp=UINPBA00004N" ]
año/Mes | Html | Total | |
---|---|---|---|
2024 Noviembre | 8 | 1 | 9 |
2024 Octubre | 42 | 6 | 48 |
2024 Septiembre | 36 | 6 | 42 |
2024 Agosto | 33 | 3 | 36 |
2024 Julio | 15 | 5 | 20 |
2024 Junio | 20 | 9 | 29 |
2024 Mayo | 22 | 5 | 27 |
2024 Abril | 29 | 9 | 38 |
2024 Marzo | 30 | 7 | 37 |
2024 Febrero | 35 | 3 | 38 |
2024 Enero | 20 | 5 | 25 |
2023 Diciembre | 24 | 5 | 29 |
2023 Noviembre | 21 | 11 | 32 |
2023 Octubre | 17 | 7 | 24 |
2023 Septiembre | 11 | 0 | 11 |
2023 Agosto | 14 | 10 | 24 |
2023 Julio | 6 | 10 | 16 |
2023 Junio | 22 | 3 | 25 |
2023 Mayo | 46 | 6 | 52 |
2023 Abril | 53 | 3 | 56 |
2023 Marzo | 51 | 4 | 55 |
2023 Febrero | 18 | 5 | 23 |
2023 Enero | 12 | 16 | 28 |
2022 Diciembre | 15 | 10 | 25 |
2022 Noviembre | 13 | 13 | 26 |
2022 Octubre | 15 | 6 | 21 |
2022 Septiembre | 10 | 8 | 18 |
2022 Agosto | 20 | 6 | 26 |
2022 Julio | 18 | 10 | 28 |
2022 Junio | 16 | 6 | 22 |
2022 Mayo | 21 | 7 | 28 |
2022 Abril | 9 | 8 | 17 |
2022 Marzo | 14 | 10 | 24 |
2022 Febrero | 19 | 6 | 25 |
2022 Enero | 12 | 7 | 19 |
2021 Diciembre | 14 | 9 | 23 |
2021 Noviembre | 9 | 5 | 14 |
2021 Octubre | 16 | 10 | 26 |
2021 Septiembre | 7 | 9 | 16 |
2021 Agosto | 18 | 22 | 40 |
2021 Julio | 6 | 10 | 16 |
2021 Junio | 14 | 13 | 27 |
2021 Mayo | 13 | 5 | 18 |
2021 Abril | 40 | 21 | 61 |
2021 Marzo | 15 | 15 | 30 |
2021 Febrero | 16 | 4 | 20 |
2021 Enero | 17 | 15 | 32 |
2020 Diciembre | 22 | 8 | 30 |
2020 Noviembre | 15 | 12 | 27 |
2020 Octubre | 18 | 6 | 24 |
2020 Septiembre | 18 | 13 | 31 |
2020 Agosto | 19 | 12 | 31 |
2020 Julio | 11 | 12 | 23 |
2020 Junio | 15 | 16 | 31 |
2020 Mayo | 24 | 6 | 30 |
2020 Abril | 17 | 6 | 23 |
2020 Marzo | 18 | 2 | 20 |
2020 Febrero | 23 | 7 | 30 |
2020 Enero | 14 | 5 | 19 |
2019 Diciembre | 11 | 5 | 16 |
2019 Noviembre | 12 | 5 | 17 |
2019 Octubre | 13 | 4 | 17 |
2019 Septiembre | 20 | 3 | 23 |
2019 Agosto | 6 | 6 | 12 |
2019 Julio | 15 | 14 | 29 |
2019 Junio | 29 | 23 | 52 |
2019 Mayo | 50 | 23 | 73 |
2019 Abril | 37 | 7 | 44 |
2019 Marzo | 6 | 10 | 16 |
2019 Febrero | 8 | 7 | 15 |
2019 Enero | 4 | 6 | 10 |
2018 Diciembre | 8 | 3 | 11 |
2018 Noviembre | 11 | 3 | 14 |
2018 Octubre | 6 | 17 | 23 |
2018 Septiembre | 23 | 3 | 26 |
2018 Agosto | 44 | 0 | 44 |
2018 Julio | 8 | 2 | 10 |
2018 Junio | 13 | 0 | 13 |
2018 Mayo | 11 | 3 | 14 |
2018 Abril | 5 | 0 | 5 |
2018 Marzo | 5 | 0 | 5 |
2018 Febrero | 29 | 1 | 30 |
2018 Enero | 3 | 0 | 3 |
2017 Diciembre | 5 | 1 | 6 |
2017 Noviembre | 4 | 1 | 5 |
2017 Octubre | 6 | 0 | 6 |
2017 Septiembre | 2 | 1 | 3 |
2017 Agosto | 5 | 2 | 7 |
2017 Julio | 8 | 2 | 10 |
2017 Junio | 9 | 8 | 17 |
2017 Mayo | 12 | 4 | 16 |
2017 Abril | 14 | 34 | 48 |
2017 Marzo | 11 | 9 | 20 |
2017 Febrero | 3 | 1 | 4 |
2017 Enero | 3 | 0 | 3 |
2016 Diciembre | 7 | 5 | 12 |
2016 Noviembre | 19 | 2 | 21 |
2016 Octubre | 21 | 7 | 28 |
2016 Septiembre | 7 | 5 | 12 |
2016 Agosto | 15 | 1 | 16 |
2016 Julio | 7 | 2 | 9 |
2016 Junio | 11 | 5 | 16 |
2016 Mayo | 5 | 12 | 17 |
2016 Abril | 6 | 6 | 12 |
2016 Marzo | 8 | 11 | 19 |
2016 Febrero | 6 | 11 | 17 |
2016 Enero | 6 | 13 | 19 |
2015 Diciembre | 10 | 8 | 18 |
2015 Noviembre | 12 | 7 | 19 |
2015 Octubre | 16 | 4 | 20 |
2015 Septiembre | 8 | 5 | 13 |
2015 Agosto | 8 | 3 | 11 |
2015 Julio | 6 | 1 | 7 |
2015 Junio | 2 | 0 | 2 |
2015 Mayo | 5 | 1 | 6 |
2015 Abril | 13 | 18 | 31 |
2015 Marzo | 16 | 7 | 23 |
2015 Febrero | 10 | 2 | 12 |
2015 Enero | 15 | 1 | 16 |
2014 Diciembre | 19 | 7 | 26 |
2014 Noviembre | 9 | 0 | 9 |
2014 Octubre | 22 | 5 | 27 |
2014 Septiembre | 13 | 2 | 15 |
2014 Agosto | 12 | 1 | 13 |
2014 Julio | 9 | 3 | 12 |
2014 Junio | 14 | 2 | 16 |
2014 Mayo | 12 | 1 | 13 |
2014 Abril | 5 | 2 | 7 |
2014 Marzo | 8 | 4 | 12 |
2014 Febrero | 6 | 3 | 9 |
2014 Enero | 12 | 2 | 14 |
2013 Diciembre | 11 | 3 | 14 |
2013 Noviembre | 7 | 5 | 12 |
2013 Octubre | 4 | 1 | 5 |
2013 Septiembre | 7 | 2 | 9 |
2013 Agosto | 7 | 0 | 7 |
2013 Julio | 8 | 1 | 9 |
2013 Junio | 0 | 1 | 1 |
2010 Agosto | 93 | 0 | 93 |