Expanded clay particles have been used in industrial applications, such as thermal and acoustic insulation materials, and in buildings’ structural elements. These materials can also be used in the manufacture of cores of sandwich materials where it is desired to have a good performance in terms of mechanical resistance, thermal insulation and sound and low weight of buildings or industrial equipment. In this study, epoxy matrix composites with different weight fractions of expanded clay particles were manufactured and characterized in terms of their physical and mechanical properties. The resulting composites were processed using the mixing techniques and casting in vacuum. The performed tests showed a decrease in the noise intensity and thermal conductivity with increasing mass fraction of expanded clay particles. In regards of mechanical behavior, it was noted that the stiffness increases, while the values of mechanical resistance in bending and compression decreases with increasing mass fraction of expanded clay particles. The fracture toughness also decreased with increasing weight fraction.
Información de la revista
Vol. 28. Núm. 1.
Páginas 34-39 (enero - junio 2016)
Vol. 28. Núm. 1.
Páginas 34-39 (enero - junio 2016)
Special Issue on Cellular Materials
Acceso a texto completo
Assessment of acoustic, thermal and mechanical properties of epoxy composites reinforced with expanded clay particles
Visitas
1380
Este artículo ha recibido
Información del artículo
Abstract
Keywords:
composite materials
clay particles
fracture toughness
noise intensity
thermal conductivity
El Texto completo está disponible en PDF
References
[1]
M. Vasina, D.C. Hughes, K.V. Horoshenkov, L. Lapcík Jr..
Appl. Acoust., 67 (2006), pp. 787
[2]
J.A.M. Ferreira, C. Capela, J.D. Costa.
Compos. Part A, 41 (2010), pp. 345
[3]
C. Capela, J.A.M. Ferreira, J.D. Costa.
Mater. Sci. Forum, 280 (2010), pp. 636-637
[4]
J.A.M. Ferreira, C. Capela, J.D. Costa.
Strain, 47 (2011), pp. 275
[5]
R. Bartolini, S. Filippozzi, E. Princi, C. Schenone, S. Vicini.
Appl. Clay Sci., 48 (2010), pp. 460
[6]
O. Castro, J.M. Silva, T. Devezas, A. Silva, L. Gil.
Mater. Design, 31 (2010), pp. 425
[7]
J.R. Vinson.
The behaviour of sandwich structures of isotropic and composite materials.
Technomic Publishing Co. Inc., (1999),
[8]
D. Zenkert.
The handbook of sandwich construction. In: North European engineering and science conference series.
EMAS Publishing, (1997),
[9]
C. Forest, P. Chaumont, P. Cassagnau, B. Swoboda, P. Sonntag.
Prog. Polym. Sci., 41 (2015), pp. 122
[10]
R.A. Pearson, A.F. Yee.
J. Mater. Sci., 21 (1986), pp. 2475
[11]
A.C. Garg, Y.-W. Mai.
Compos. Sci. Technol., 31 (1988), pp. 179
[12]
K. Ho, M. Pyo.
J Appl Polym Sci., 61 (1996), pp. 659
[13]
A.J. Kinloch, M.L. Yuen, S.D. Yenkins.
J Mater Sci., 29 (1994), pp. 3781
[14]
K. Ho, M. Pyo.
J Appl. Polym. Sci., 69 (1998), pp. 405
[15]
F.F. Lange, K.C. Redford.
J. Mater. Sci., 6 (1971), pp. 1197
[16]
J.A.M. Ferreira, J.D. Costa, C. Capela.
Theor. Appl. Fract. Mech., 26 (1997), pp. 105
[17]
L. Jorge, J. Eduardo; M. Paulo, Betões de agregados leves de argila expandida, Lisboa: APEBP, ISBN: 972-9071-30-6, 2004.
[18]
J. Yan, M. Kim, K. Kang, K. Joo, Y. Kang, S. Ahn.
Polym. Polym. Compos, 22 (2014), pp. 65
Copyright © 2016. Portuguese Society of Materials (SPM)