In this work, the effect of sugarcane bagasse ash waste on the densification behavior of vitrified floor tiles was investigated. Four tile formulations containing up to 5wt. % of sugarcane bagasse ash waste as a replacement of quartz were prepared. The floor tile manufacturing route consisted of the following steps: powder preparation by the dry process, uniaxial pressing, and firing at temperatures between 1190°C and 1250°C using a fast-firing cycle. The densification was measured by three parameters: linear shrinkage, water absorption, and flexural strength. The microstructure was evaluated by XRD and SEM. The experimental results indicated that the densification behavior of floor tile formulations was influenced by both the amount of sugarcane bagasse ash waste and the maximum firing temperature. Microstructural variation occurred during firing. However, the use of sugarcane bagasse ash waste had little effect on phase evolution during the fast-firing cycle. An optimum amount of sugarcane bagasse ash waste (up to 2.5wt. %) for the replacement of quartz allowed for the highest quality production of floor tile materials.
Información de la revista
Vol. 28. Núm. 1.
Páginas 60-66 (enero - junio 2016)
Vol. 28. Núm. 1.
Páginas 60-66 (enero - junio 2016)
Acceso a texto completo
Densification behavior of floor tiles added with sugarcane bagasse ash waste
Visitas
1922
M.A.S. Schettino, F.B. Siqueira, J.N.F. Holanda
Autor para correspondencia
Group of Ceramic Materials/LAMAV, Northern Fluminense State University - UENF, CEP 28013-602, Campos dos Goytacazes, RJ, Brazil
Este artículo ha recibido
Información del artículo
Abstract
Keywords:
sugarcane bagasse ash
waste
floor tile
densification
microstructure
El Texto completo está disponible en PDF
References
[1]
M. Safiuddin, M.Z. Jumart, M.A. Salan, M.J. Islam, R. Hashim.
I.J. Phys. Sci., 5 (2010), pp. 1952
[2]
O.D. Cheeseman.
Environmental Impacts of Sugar Production.
CABI Publishing, (2004),
[3]
P. Payá, J. Monzó, M.V. Borrachero, L. Diaz-Pinzón, L.M. Ordónez.
J. Chem. Technol. Biotech., 77 (2002), pp. 321
[4]
K.C.P. Faria, R.F. Gurgel, J.N.F. Holanda.
J. Environ. Manag., 101 (2012), pp. 7
[5]
R. Alavéz-Ramirez, P. Montes-García, J. Martinez-Reys, D.C. Altamirano-Juárez, Y. Gochi-Ponce.
Constr. Build. Mater., 34 (2012), pp. 296
[6]
A. Barba, V. Beltrán, C. Felíu, J. Garcia, F. Ginés, E. Sánchez, V. Sanz, Matérias Primas Para la Fabricación of Soportes de Baldosas Cerámicas, second ed., ITC, Catellón, 2002.
[7]
P. Torres, H.R. Fernandes, S. Agathopoulus, D.U. Tulyaganov, J.M.F. Ferreira.
J. Eur. Ceram. Soc., 24 (2004), pp. 3177
[8]
M.A. Monteiro, M.M. Jordan, M.B. Almendro-Condel, T. Senfelíu, M.S. Hernández-Crespo.
Appl. Clay Sci., 43 (2009), pp. 186
[9]
A.J. Souza, B.C.A. Pinheiro, J.N.F. Holanda.
J. Mater. Process. Technol, 210 (2010), pp. 1898
[10]
F. Andreola, L. Barbieri, F. Bondioli, I. Lancellotti, P. Misselli.
I.J. Appl. Ceram. Technol, 7 (2010), pp. 909
[11]
J.A. Junkes, M.A. Carvalho, A.M. Segadães, D. Hotza.
Interceram, 1 (2011), pp. 36
[12]
B.C.A. Pinheiro, J.N.F. Holanda.
J. Environ. Manag., 118 (2013), pp. 205
[13]
W. Acchar, R.J.S. Paranhos.
J. Solid Waste Technol. Manag., 38 (2012), pp. 5
[14]
G. Sivakumar, V. Hariharan, M. Shanmugam, K. Mohanraj.
I.J ChemTech Res., 6 (2014), pp. 4991
[15]
B.C.A. Pinheiro, A.G.P. Silva, J.N.F. Holanda.
Cerâm. Ind., 15 (2010), pp. 1
[16]
L.B. Officine Meccaniche.
Ceram. World Rev., 89 (2010), pp. 66
[17]
E.F. Osburn.
Phase Equilibrium Diagrams of Oxide Systems.
American Ceramic Society, (1960),
[18]
W.M. Carty, U. Senapati.
J. Am. Ceram. Soc., 81 (1998), pp. 3
[19]
K.C.P. Faria, J.N.F. Holanda.
J. Therm. Anal. Calorim., 114 (2013), pp. 27
[20]
A.D. Noni Jr., D. Hotza, V.C. Saler, E.S. Vilches.
Mater. Sci. Eng. A, 527 (2010), pp. 1730
[21]
J.S. Reed.
Principles of Ceramic Processing.
second ed., Wiley-Interscience, (1995),
[22]
ISO 13006, Ceramics Tiles – Definitions, Classification, Characteristics and Marking, 1998.
[23]
V.Z. Abdrakhimov, E.C. Abdrakhimova.
Glass and Ceram., 56 (1999), pp. 263
Copyright © 2016. Portuguese Society of Materials (SPM)