This paper presents experimental and numerical results from embedment tests carried out accordingly the EN383 standard. The experimental program included series of compressive embedment tests, along the parallel and perpendicular-to-grain directions. The specimens were manufactured with maritime pine wood and were loaded using a steel dowel. The load-displacement curves resulted from experimental tests allowed to estimate the embedding strength and the foundation modulus. Concerning the numerical simulations, a plasticity model, based on Hill's criterion, was used to simulate the mechanical behaviour observed in the embedment tests. The wood was modelled as an orthotropic material following an elasto-plastic behaviour. The steel dowel was considered isotropic material and modelled with elastic behaviour. Besides, the interaction between both materials was modelled using contact finite elements. A parametric study to evaluate the influence of dowel/wood clearance and different friction coefficients was performed. The proposed 3D finite element model showed the capability to simulate the non-linear behaviour observed in the experimental embedment tests. An experimental/numerical procedure for the identification of constitutive models aiming the simulation of ductile behaviour of wood was presented. This is particularly important to simulate the mechanical behaviour of doweled joints.
Información de la revista
Vol. 27. Núm. 1.
Páginas 15-26 (enero - junio 2015)
Vol. 27. Núm. 1.
Páginas 15-26 (enero - junio 2015)
Acceso a texto completo
Embedment strength characterization of pine wood. Numerical study of the non-linear behaviour
Visitas
1782
Cristóvão L. dos Santosa,b,
, Abílio M.P. de Jesusc,d, José J.L. Moraisa,b
Autor para correspondencia
a Universidade de Trás-os-Montes e Alto Douro, UTAD, Escola de Ciências e Tecnologia, Quinta de Prados, 5001-801 Vila Real, Portugal
b CITAB, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
c Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
d INEGI/LAETA, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Este artículo ha recibido
Información del artículo
Abstract
Keywords:
maritime pine wood (Pinus pinaster Ait.)
embedment tests
finite element analysis
Hill's plasticity model
hole/fastener clearance
friction.
El Texto completo está disponible en PDF
References
[1]
CEN1995-1-1. Eurocode 5: Design of timber structures - Part 1-1: General rules and rules for buildings, CEN/TC 250/SC5 (2004).
[2]
CEN383. Timber Structures - Test methods - Determination of embedment strength and foundation values for dowel type fasteners. European Committee for Standardization (2007).
[3]
K.W. Johansen.
International Association for Bridge and Structural Engineering.
IABSE Journal, 9 (1949),
[4]
T. Zhou, Z.W. Guan.
Prog. Struct. Engng Mater, 8 (2006),
[5]
T. Zhou, Z.W. Guan.
Constr. Build. Mater, 25 (2011), pp. 598
[6]
M. Patton-Mallory, P.J. Pellicane, F.W. Smith.
J. Struct. Eng, 123 (1997),
[7]
K. Sawata, M. Yasamura.
J. Wood Sci, 49 (2003),
[8]
C.J. Chen, T.L. Lee, T.L.D.S. Jeng.
Comput. Struct, 81 (2003),
[9]
P. Racher, J.F. Bocquet.
Electron J. Struct. Eng., 5 (2005),
[10]
N. Kharouf, G. McClure, I. Smith.
Comput. Struct., 81 (2003),
[11]
A. Reiterer, S.E. Stanzl-Tschegg.
Mech. Mater., 33 (2001), pp. 705
[12]
B.H. Xu, A. Bouchaïr, M. Taazount, P. Racher.
Constr. Build. Mater., 23 (2009),
[13]
A.M.P.G. Dias, J.W.G. Van de Kuilen, H.M.P. Cruz, S.M.R. Lopes.
Wood Fiber Sci., 42 (2010),
[14]
J.-P. Hong, J.D. Barrett, F. Lam.
J. Wood Sci., 57 (2011),
[15]
M. Oudjene, M. Khelifa.
Constr. Build. Mater., 23 (2009), pp. 3359
[16]
D.M. Moses, H.G.L. Prion.
Can. J. Civil. Eng., 30 (2003),
[17]
D.M. Moses, H.G.L. Prion.
Compos. Part B-Eng., 35 (2004),
[18]
M. Patton-Mallory, S.M. Cramer, F.W. Smith, P.J. Pellicane.
J. Struct. Eng., 123 (1997),
[19]
B.H. Xu, A. Bouchaïr, M. Taazount, P. Racher.
J. Wood Sci., 59 (2013),
[20]
M. Yasumura, L. Daudeville.
J. Wood Sci., 46 (2000),
[21]
M. Ballerini, M. Rizzi.
Mater. Struct., 40 (2007), pp. 139
[22]
L. Daudeville, M. Yasumura.
Mater. Struct., 29 (1996),
[23]
E. Resch, M. Kaliske.
Computers and Structures, 88 (2010),
[24]
E. Resch, M. Kaliske.
Engineering Structures, 41 (2012),
[25]
C.L. Santos, J.J.L. Morais, A.M.P. de Jesus.
Frattura ed Integrità Strutturale, 31 (2015),
[26]
R. Hill.
A theory of the yielding and plastic flow ofanisotropic metals, Proceedings of the Royal Society of London Series A, 193 (1948), pp. 281-297
[27]
C.L. Santos, A.M.P. de Jesus, J.J.L. Morais, J.L.P.C. Lousada.
Strain., 46 (2010),
[28]
J. Sjodin, E. Serrano, B. Enquist.
Holz Roh Werkst., 66 (2008),
[29]
W. Munoz, A. Salenikovich, M. Mohammad, P. Quenneville.
Determination of yield point and ductility of timber assemblies: in search for a harmonized approach, Proc. of Meeting 41 of CIB-W18, Canada.
St Andrews, (2008),
[30]
A.M.P. de Jesus, A.M.V. Lima, J.J.L. Morais, J.L.C. Lousada.
An investigation on compressive quasi-static behaviour of pine wood, 10th Portuguese Conference on Fracture.
Guimarães, 22-24th February, (2006),
[31]
J.C. Xavier, N.M. Garrido, M. Oliveira, J.L. Morais, P.P. Camanho, F. Pierron.
Composites: Part A., 35 (2004),
[32]
J.C. Xavier, M. Oliveira, J.L. Morais, T. Pinto.
Holzforschung, 63 (2009),