The paper gives a short overview of geometrical characterization, experimental testing, computational modelling and finite element analysis of various cellular metals: Advanced Pore Morphology (APM) foam, open-cell aluminum foam, Metallic Hollow Sphere Structure (MHSS) and cellular metals with uni-directional pores (UniPore). The geometrical analysis and characterization is based on the analysis of micro computed tomography scans and proper recognition of their internal cellular structure, taking into account statistical distribution of morphological and topological properties. The results of conducted geometrical analysis provided means to develop methodology for proper 2D and 3D geometrical modelling of irregular cellular structures and consequent formation of computational models. These were used to study the compressive and bending behavior of analyzed cellular structures by means of quasi-static and dynamic nonlinear computational simulations (using engineering codes ABAQUS and LS-DYNA), validated by experimental tests.
Información de la revista
Vol. 28. Núm. 1.
Páginas 9-13 (enero - junio 2016)
Vol. 28. Núm. 1.
Páginas 9-13 (enero - junio 2016)
Special Issue on Cellular Materials
Acceso a texto completo
Geometrical and mechanical analysis of various types of cellular metals
Visitas
1378
Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
Este artículo ha recibido
Información del artículo
Abstract
Keywords:
cellular metals
mechanical characterization
geometrical analysis
advanced pore morphology (APM) foam
metallic hollow sphere structure (MHSS)
UniPore structure
El Texto completo está disponible en PDF
References
[1]
M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley.
Metal foams: a design guide.
Elsevier Science, Burlington, (2000),
[2]
L.J. Gibson, M.F. Ashby.
Cellular solids: structure and properties.
Cambridge University Press, (1997),
[3]
J. Banhart.
Prog. Mater. Sci., 46 (2001), pp. 6
[4]
M. Vesenjak, L. Krstulović-Opara, Z. Ren.
Polym. Test, 32 (2013), pp. 8
[5]
M. Vesenjak, L. Krstulović-Opara, Z. Ren, A. Öchsner, Ž. Domazet.
Exp. Mech, 49 (2009), pp. 4
[6]
M. Vesenjak, L. Krstulović-Opara, Z. Ren, Ž. Domazet.
Polym. Test, 29 (2010), pp. 8
[7]
I. Duarte, M. Vesenjak, L. Krstulović-Opara, I. Anžel, J.M.F. Ferreira.
Mater. Design, 66 (2015), pp. 532
[8]
I. Duarte, M. Vesenjak, L. Krstulović-Opara, Z. Ren.
Compos. Struct, 124 (2015), pp. 128
[9]
I. Duarte, M. Vesenjak, L. Krstulović-Opara.
Compos. Struct, 109 (2014), pp. 48
[10]
M. Vesenjak, C. Veyhl, T. Fiedler.
Mater. Sci. Eng. A, 541 (2012), pp. 105
[11]
M. Vesenjak, L. Krstulović-Opara, Z. Ren.
Polym. Test, 31 (2012), pp. 5
[12]
C. Petit, M. Sylvain, E. Maire.
Journal of Materials Research, 28 (2013), pp. 17
[13]
I. Kozma, I. Zsoldos, G. Dorogi, S. Papp.
Periodica Polytechnica, 58 (2014), pp. 2
[14]
M. Vesenjak, M. Borovinšek, T. Fiedler, Y. Higa, Z. Ren.
Mater. Lett, 110 (2013), pp. 201
[15]
C. Körner, R.F. Singer.
Adv. Eng. Mater, 2 (2000), pp. 4
[16]
M. Vesenjak, T. Fiedler, Z. Ren, A. Öchsner.
Adv. Eng. Mater, 10 (2008), pp. 3
[17]
H. Nakajima.
Prog. Mater. Sci, 52 (2007), pp. 7
[18]
T. Fiedler, C. Veyhl, I.V. Belova, M. Tane, H. Nakajima, T. Bernthaler, M. Merkel, A. Öchsner, G.E. Murch.
Adv. Eng. Mater, 14 (2012), pp. 3
[19]
T. Fiedler, M. Taherishargh, L. Krstulović-Opara, M. Vesenjak.
Mater. Sci. Eng. A, 626 (2015), pp. 296
[20]
K. Hokamoto, M. Vesenjak, Z. Ren.
Mater. Lett, 137 (2014), pp. 323
[21]
K. Hokamoto, S. Torii, A. Kimura, S. Kai, in: Japan Patent Office, 2012.
[22]
T. Fiedler, M. Borovinšek, K. Hokamoto, M. Vesenjak.
Int. J. Heat Mass Trans, 83 (2015), pp. 366
[23]
J.O. Hallquist.
LS-DYNA theoretical manual, Livermore Software Technology Corporation.
Livermore, (2006),
[24]
T. Hipke, G. Lange, R. Poss.
Taschenbuch für Aluminiumschäume.
Alu Media, (2007),
[25]
M. Vesenjak, J. Matela, P. Young, R. Said.
Acta medico-biotechnica, 2 (2009), pp. 19
[26]
J. Hohe, V. Hardenacke, V. Fascio, Y. Girard, J. Baumeister, K. Stöbener, J. Weise, D. Lehmhus, S. Pattofatto, H. Zeng, H. Zhao, V. Calbucci, F. Rustichelli, F. Fiori.
Mater. Design, 39 (2012),
2 0
[27]
D. Lehmhus, J. Baumeister, L. Stutz, E. Schneider, K. Stöbener, M. Avalle, L. Peroni, M. Peroni.
Adv. Eng. Mater, 12 (2010), pp. 7
[28]
M. Avalle, D. Lehmhus, L. Peroni, H. Pleteit, P. Schmiechen, G. Belingardi, M. Busse.
Int. J. Crashworthiness, 14 (2009), pp. 3
[29]
K. Stöbener, D. Lehmhus, M. Avalle, L. Peroni, M. Busse.
Int. J. Solids Struct, 45 (2008), pp. 21
[30]
T. Fiedler, M.A. Sulong, M. Vesenjak, Y. Higa, I.V. Belova, A. Öchsner, G.E. Murch.
Int. J. Heat Mass Trans, 73 (2014), pp. 826
[31]
M.A. Sulong, M. Vesenjak, I.V. Belova, G.E. Murch, T. Fiedler.
Mater. Sci. Eng. A, 607 (2014), pp. 498
[32]
M. Ulbin, M. Borovinšek, Y. Higa, K. Shimojima, M. Vesenjak, Z. Ren.
Mater. Lett, 136 (2014), pp. 416
[33]
T. Fiedler, A. Öchsner, J. Grácio.
J. Compos. Mater, 44 (2010), pp. 10
[34]
M. Vesenjak, Z. Ren, T. Fiedler, A. Öchsner.
J. Compos. Mater, 43 (2009), pp. 22
[35]
O. Andersen, U. Waag, L. Schneider, G. Stephani, B. Kieback.
Adv. Eng. Mater, 2 (2000), pp. 4
[36]
M. Vesenjak, F. Gačnik, L. Krstulović-Opara, Z. Ren.
J. Compos. Mater, 45 (2011), pp. 26
Copyright © 2016. Portuguese Society of Materials (SPM)