Crenellation is a novel local engineering technique aimed at improving the fatigue performance of the airframe structures without increasing the weight. In this concept, a systematic thickness variation is applied to the fuselage skin to retard the fatigue crack growth. In order to achieve the best retardation effect, it is necessary optimize the crenellation geometry. As a result, a parameter study characterizing three independent geometric aspects of the crenellations was performed: the crenellation ratio c, the periodic length λ and a position parameter. The study was based on a FEA model validated by experiments. It is expected to give a sufficiently accurate prediction on fatigue life of different crenellation patterns. The obtained knowledge concerning the impact of those geometrical factors could provide guidance for future crenellation designs for industrial applications.
Información de la revista
Vol. 27. Núm. 2.
Páginas 100-107 (julio - diciembre 2015)
Vol. 27. Núm. 2.
Páginas 100-107 (julio - diciembre 2015)
Acceso a texto completo
Influence of the geometry on the fatigue performance of crenellated fuselage panels
Visitas
1715
Jin Lu
, Norbert Huber, Nikolai Kashaev
Autor para correspondencia
Institute of Materials Research, Materials Mechanics, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany
Este artículo ha recibido
Información del artículo
Abstract
Keywords:
fatigue life improvement
airframe structure
crenellations
geometric optimization
El Texto completo está disponible en PDF
References
[1]
M.-V. Uz, M. Koçak, F. Lemaitre, J.-C. Ehrström, S. Kempa, F. Bron.
Int. J. Fatigue, 31 (2009),
[2]
M.-V. Uz, Improvement of Damage tolerance of Laser Beam Welded Aerospace Structures via Local Engineering, Ph.D Thesis, Techischen Universität Hamburg-Harburg, 2010.
[3]
S. E. Eren, M. Koçak, K.M. Nikbin, International Conference on Advances in Welding Science and Technology for Construction, Energy and Transportation, Istanbul, Turkey, 2010.
[4]
R. Muzzolini, J.-C. Ehrstroem, The 15th Advanced Aerospace Materials & Processes Conference and Exposition AeroMat, Seattle, USA, 2004.
[5]
R. J. Bucci, Aircraft Structrual Integrity Program Conference, San Antonio, USA, 2006.
[6]
J.-C. Ehrstroem, R. Muzzolini, S. Arsene, S. Van der Veen, Proceedings of the 23rd Symposium of the International Committee on Aeronautical Fatigue, Hamburg, Germany, 2005.
[7]
S.M. Häusler, P.M. Baiy, S.M.O. Tavares, A. Brot, P. Horst, M.H. Aliabadi, P.M.S.T. de Castro, Y. Peleg-Wolfin.
Structural Durability & Health Monitoring, 7 (2011), pp. 3
[8]
M.-V. Uz, Y.J. Chen, Proceedings of the 26th Symposium of the International Committee on Aeronautical Fatigue, Montreal, Canada, 2011.
[9]
L. Wang, W.T. Chow, H. Kawai, S.N. Atluri.
AIAA Journal, 36 (1998), pp. 3
[10]
U. G. Goranson, In Proceeds of International Conference on Damage Tolerance of Aircraft Structures, Delft, 2007.
[11]
J. Lu, N. Kashaev, N. Huber, Proceedings of the 29th Congress of the International Council of the Aeronautical Sciences, Saint Petersburg, 2014.
[12]
S. Suresh.
Fatigue of Materials.
2nd ed., Cambridge University Press, (2006),
[13]
ASTM E647 Standard test method for measurement of fatigue crack growth rates.
[14]
R. Krueger.
App. Mech. Rev., 57 (2004), pp. 2
Copyright © 2015. Sociedade Portuguesa de Materiais (SPM)