Adhesive bonding is a viable technique to reduce weight and complexity in structures. Additionally, this joining technique is also a common repair method for metal and composite structures. However, a generalized lack of confidence in the fatigue and long-term behaviour of bonded joints hinder their wider application. Suitable strength prediction techniques must be available for the application of adhesive bonding, and these can be based on mechanics of materials, conventional fracture mechanics or damage mechanics. These two last methodologies require the knowledge of the fracture toughness (GC) of materials. Being damage mechanics-based, Cohesive Zone Modelling (CZM) analyses coupled with Finite Elements (FE) are under investigation. In this work, CZM laws were estimated in shear for a brittle adhesive (Araldite® AV138) and high-strength aluminium adherends, considering the End-Notched Flexure (ENF) test geometry. The CZM laws were obtained by an inverse methodology based on curve fitting, which made possible the precise estimation of the adhesive joints’ behaviour. It was concluded that a unique set of shear fracture toughness (GIIC) and shear cohesive strength (ts0) exists for each specimen that accurately reproduces the adhesive layer behaviour. With this information, the accurate strength prediction of adhesive joints in shear is made possible by CZM.
Información de la revista
Acceso a texto completo
Shear fracture toughness and cohesive laws of adhesively-bonded joints
Visitas
1282
J.C.S. Azevedo, R.D.S.G. Campilho, F.J.G. Silva
Autor para correspondencia
Departamento de Engenharia Mecânica, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
Este artículo ha recibido
Información del artículo
Abstract
Keywords:
Crack growth
finite element analysis
fracture mechanics
structural integrity
El Texto completo está disponible en PDF
References
[1]
H. Jin, G.M. Miller, S.J. Pety, A.S. Griffin, D.S. Stradley, D. Roach, N.R. Sottos, S.R. White.
Int. J. Adhes. Adhes, 44 (2013), pp. 157
[2]
J. Jumel, M.K. Budzik, N.B. Salem, M.E.R. Shanahan.
Int. J. Solids Struct., 50 (2013), pp. 297
[3]
J.D. Barrett, R.O. Foschi.
Eng. Fract. Mech., 9 (1977), pp. 371
[4]
K. Leffler, K.S. Alfredsson, U. Stigh.
Int. J. Solids Struct., 44 (2007), pp. 530
[5]
M.D. Banea, L.F.M. da Silva, R.D.S.G. Campilho.
J. Adhes, 88 (2012), pp. 534
[6]
K.N. Anyfantis.
Eng. Fract. Mech., 126 (2014), pp. 108
[7]
R.D.S.G. Campilho, M.D. Banea, F.J.P. Chaves, L.F.M. da Silva.
Comput. Mater. Sci., 50 (2011), pp. 1543
[8]
K.C. Pandya, J.G. Williams.
SPE Trans., 40 (2000), pp. 1765
[9]
U. Stigh, A. Biel, T. Walander.
Eng. Fract. Mech., 129 (2014), pp. 67
[10]
T. Carlberger, U. Stigh.
J. Adhes., 86 (2010), pp. 816
[11]
K.S. Alfredsson, A. Biel, S. Salini.
Int. J. Adhes. Adhes., 62 (2015), pp. 130
[12]
M.F.S.F. de Moura, R.D.S.G. Campilho, J.P.M. Gonçalves.
Int. J. Solids Struct., 46 (2009), pp. 1589
[13]
X. Chen, X. Deng, M.A. Sutton, P. Zavattieri.
Int. J. Mech. Sci., 79 (2014), pp. 206
[14]
R.D.S.G. Campilho, M.D. Banea, A.M.G. Pinto, L.F.M. da Silva, A.M.P. de Jesus.
Int. J. Adhes. Adhes., 31 (2011), pp. 363
[15]
R.D.S.G. Campilho, M.D. Banea, J.A.B.P. Neto, L.F.M. da Silva.
Int. J. Adhes. Adhes., 44 (2013), pp. 48
[16]
M.D. Banea, L.F.M. da Silva, R.D.S.G. Campilho.
J. Adhes., 91 (2015), pp. 331
[17]
M.F.S.F. de Moura, A.B. de Morais.
Eng. Fract. Mech., 75 (2008), pp. 2584
[18]
R.D.S.G. Campilho, M.F.S.F. de Moura, D.A. Ramantani, J.J.L. Morais, J.J.M.S. Domingues.
Compos. Sci. Technol., 70 (2010), pp. 371
[19]
R.D.S.G. Campilho, M.F.S.F. de Moura, A.M.J.P. Barreto, J.J.L. Morais, J.J.M.S. Domingues.
Composites Part A, 40 (2009), pp. 852
[20]
M. Ridha, V.B.C. Tan, T.E. Tay.
Compos. Struct., 93 (2010), pp. 1239
[21]
M.F.S.F. de Moura, R.D.S.G. Campilho, J.P.M. Gonçalves.
Int. J. Solids Struct., 46 (2009), pp. 1589
Copyright © 2017. Portuguese Society of Materials (SPM)