Many studies have demonstrated the sensitivity of probiotics to the bile salt solution. Encapsulation is a useful technique to protect probiotics from the bile salts and other constituent products that it encounters during gastrointestinal transit and improve the delivery of probiotics to large intestine in sufficient amounts for colonization and proliferation in order to exert a beneficial effect on the host. Encapsulation materials are recognized as safe ingredients and can be used in food applications. There is a widespread interest in the improvement of the physical and mechanical stability of the polymers use in probiotics encapsulation. Therefore, the objective of this study is to review the effect of various types of encapsulating materials on the protection and survival of probiotics during intestinal digestion.
Información de la revista
Vol. 27. Núm. 1.
Páginas 73-77 (enero - junio 2015)
Vol. 27. Núm. 1.
Páginas 73-77 (enero - junio 2015)
Acceso a texto completo
The effect of encapsulating materials on the survival of probiotics during intestinal digestion: a review
Visitas
1637
Amal Bakr Shori
King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Jeddah 21589, Saudi Arabia
Este artículo ha recibido
Información del artículo
Abstract
Keywords:
probiotics
microencapsulation
viability
bile salts.
El Texto completo está disponible en PDF
References
[1]
A. Lourens-Hattingh, B.C. Viljoen.
Int. Dairy J, 11 (2001), pp. 1-17
[2]
A.B. Shori, A.S. Baba.
J. Assoc. Arab Uni. Basic Appl. Sci, 12 (2012), pp. 50-55
[3]
A.B. Shori, A.S. Baba, J. Assoc. Arab Uni. Basic Appl. Sci. DOI: 10.1016/j.jaubas.2014.02.006, (2014).
[4]
R.L. Kandell, C. Nutr.
Cancer, 16 (1991), pp. 227-238
[5]
J.L. Fietto, R.S. Araujo, F.N. Valadao, L.G. Fietto, R.L. Brandao, M.J. Neves, F.C. Gomes, J.R. Nicoli, I.M. Castro.
Can. J. Microbiol, 50 (2004), pp. 615-621
[6]
L.E. Shi, Z.H. Li, D.T. Li, M. Xu, H.Y. Chen, Z.L. Zhang, Z.X. Tang.
J. Food Eng, 117 (2013), pp. 99-104
[7]
L.E. Shi, Z.H. Li, Z.L. Zhang, T.T. Zhang, W.M. Yu, M.L. Zhou, Z.X. Tang.
LWT- Food Sci.
Technol., 54 (2013), pp. 147-151
[8]
M.B. Thomas, M. Vaidyanathan, K. Radhakrishnan, A.M. Raichur.
J. Food Eng., 136 (2014), pp. 1-8
[9]
K.G.H. Desai, H.J. Park.
Drying Technol, 23 (2005), pp. 1361-1394
[10]
X.Y. Li, X.G. Chen, Z.W. Sun, H.J. Park, D.-S. Cha.
Carbo. Polym, 83 (2011), pp. 1479-1485
[11]
M.H. Ei-salam, S. Ei-shibiny.
Int. J. Dairy Technol, 65 (2012), pp. 13-21
[12]
P. Muthukumarasamy, P. Allan-Wojtas.
R.A. J. Food Sci, 71 (2006), pp. 20-24
[13]
M. Chávarri, I. Maranon, R. Ares, F.C. Ibanez, F. Marzo, C. Villaran Mdel.
Int. J. Food Microbiol, 142 (2010), pp. 185-189
[14]
A. Nag, K.S. Han, H. Singh.
Int. Dairy J, 21 (2011), pp. 247-253
[15]
W.S. Cheow, T.Y. Kiew, K. Hadinoto.
Carbo. Polym, 103 (2014), pp. 587-595
[16]
D. Provenzano, C.M. Lauriano, K.E. Klose.
J. Bacteriol, 183 (2001), pp. 3652-3662
[17]
Y. Murata, S. Toniwa, E. Miyamoto, S. Kawashima.
Int. J. Pharmaceut, 176 (1999), pp. 265-268
[19]
N.T. Annan, A.D. Borza, L.T. Hansen.
Food Res. Int, 41 (2008), pp. 184-193
[20]
R. Su, X. Zhu, D. Fan, Y. Mi, C. Yang, X. Jia.
Int. J. Biol. Macromol, 49 (2011), pp. 979-984
[21]
P. Kanmani, R.S. Kumar, N. Yuvaraj, K.A. Paari, V. Pattukumar, V. Arul.
Biochem. Eng. J, 58 (2011), pp. 140-147
[22]
T. Heidebach, P. Forst, U. Kulozik.
Food Hydrocoll, 23 (2009), pp. 1670-1677
[23]
T. Heidebach, P. Forst, U. Kulozik.
J. Food Eng, 98 (2010), pp. 309-316
[24]
S. Cai, M. Zhao, Y. Fang, K. Nishinari, G.O. Phillips, F. Jiang.
Food Hydrocoll, 39 (2014), pp. 295-300
[25]
Y. Chang, W. Gu, L. McLandsborough.
Food Microbiol, 29 (2012), pp. 10-17