The water management is a critical problem to overcome in the PEM fuel cell technology. Models play an important role in fuel cell development since they enable the understanding of the influence of different parameters on the cell performance allowing a systematic simulation, design and optimization of fuel cells systems. In this work, a model previously developed and validated, is used to predict the water transport through the cell. The influence of membrane thickness and transport properties, reactants pressure and relative humidity and operation temperature, on the water content through the membrane and on the cell performance was studied. The model predicts the membrane water content and water concentration profiles across the membrane electrode assembly (MEA). This work represents a useful tool to set-up suitable operating conditions leading to an optimised water management producing a better performance for PEM fuel cells.
Información de la revista
Vol. 28. Núm. 2.
Páginas 81-87 (julio - diciembre 2016)
Vol. 28. Núm. 2.
Páginas 81-87 (julio - diciembre 2016)
Special Issue on New Challenges in Energy Materials
Acceso a texto completo
Water management in PEMFC: 1-D model simulations
Visitas
1414
D.S. Falcão
, C. Pinho, A.M.F.R. Pinto
Autor para correspondencia
Autor para correspondencia
CEFT-DEQ, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto – Portugal
Información del artículo
Abstract
Keywords:
PEM Fuel cells
electrochemistry
mathematical model
water management
El Texto completo está disponible en PDF
References
[1]
M. Eikerling, Y.I. Kharkats, A.A. Kornyshev, Y.M. Volfkovich.
J. Electrochem. Soc., 145 (1998), pp. 2684
[2]
M. Eikerling, A.A. Kornyshev, A.R. Kucernak.
Physics Today, 59 (2006), pp. 38
[3]
Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher.
Appl. Energy, 88 (2011), pp. 981
[4]
J.J. Baschuk, X. Li.
J. Power Sources, 86 (2000), pp. 181
[5]
A. BiyIkoglu.
Int. J. Hydrogen Energy, 30 (2005), pp. 1181
[6]
H. Chang, J.R. Kim, J.H. Cho, H.K. Kim, K.H. Choi.
Solid State Ionics, 148 (2002), pp. 601
[7]
R. Anderson, L. Zhang, Y. Ding, M. Blanco, X. Bi, D.P. Wilkinson.
J. Power Sources, 195 (2010), pp. 4531
[8]
M.M. Nasef, A.A. Aly.
Desalination, 287 (2012), pp. 238
[9]
V. Liso, S. Simon Araya, A.C. Olesen, M.P. Nielsen, S.K. Kær.
Int. J. Hydrogen Energy, 41 (2016), pp. 3079
[10]
T.E. Springer, T.A. Zawodzinski, S. Gottesfeld.
J. Electrochem. Soc., 138 (1991), pp. 2334
[11]
D.M. Bernardi, M.W. Verbrugge.
J. Electrochem. Soc., 139 (1992), pp. 2477
[12]
A.A. Kulikovsky.
Electrochem. Commun., 6 (2004), pp. 969
[13]
A. Iranzo, P. Boillat, P. Oberholzer, J. Guerra.
Energy, 68 (2014),
[14]
R.B. Ferreira, D.S. Falcão, V.B. Oliveira, A.M.F.R. Pinto.
J. Power Sources, 277 (2015),
[15]
R.B. Ferreira, D.S. Falcão, V.B. Oliveira, A.M.F.R. Pinto.
Energy, 82 (2015), pp. 619
[16]
D.S. Falcão, V.B. Oliveira, C.M. Rangel, C. Pinho, A.M.F.R. Pinto.
Chem. Eng. Sci., 64 (2009), pp. 2216
[17]
D.S. Falcão, C.M. Rangel, C. Pinho, A.M.F.R. Pinto.
Energ Fuels, 23 (2008), pp. 397
[18]
D.S. Falcão, P.J. Gomes, V.B. Oliveira, C. Pinho, A.M.F.R. Pinto.
Int. J. Hydrogen Energy, 36 (2011), pp. 12486
[19]
K.C.G. Neyerlin, W. Jorne, J. Gasteiger, H.A..
J. Electrochem. Soc., 153 (2006), pp. A1955
[20]
K.C.G. Neyerlin, W. Jorne, J. Gasteiger, H.A..
J. Electrochem. Soc., 154 (2007), pp. B631
[21]
C.S. Spiegel, PEM Fuel Cell Modeling and Simulation Using MATLAB. 2008: Elsevier.
[22]
J. Jiang, A. Kucernak.
J. Electroanal. Chem., 567 (2004), pp. 123
[23]
C.H. Min, Y.L. He, X.L. Liu, B.H. Yin, W. Jiang, W.Q. Tao.
J. Power Sources, 160 (2006), pp. 374
Copyright © 2016. Portuguese Society of Materials (SPM)