

Endocrinología, Diabetes y Nutrición

P-181 - IMPLANTACIÓN DE SISTEMA DE ASA CERRADA HÍBRIDO MINIMED 780 G: IMPACTO SOBRE EL CONTROL GLUCÉMICO EN UNA COHORTE DE PACIENTES CON DIABETES TIPO 1

G.O. Puente BarbÉ, P. MenÉndez Cuervo, L. DÍaz Naya, B. Veiguela Blanco, L. LÁzaro Martin, M. Ablanedo Mingot y N. AntuÑa

Hospital Universitario de CabueÑes, GijÓn, EspaÑa.

Resumen

Introducción: Los sistemas híbridos avanzados de circuito cerrado representan el último avance para optimizar el control glucémico de pacientes con diabetes tipo 1 en tratamiento con infusión subcutánea continua de insulina.

Objetivos: Analizar el impacto en el control glucémico a los 6 y 12 meses tras la implantación de sistema de asa cerrada Minimed 780 G en pacientes con diabetes tipo 1 que fueron previamente portadores de bomba de infusión subcutánea de insulina (ISCI) y sistema *Flash* de monitorización de glucosa (MCG).

Material y métodos: Estudio retrospectivo de una cohorte de 18 pacientes portadores de ISCI y MCG en los que se indica el sistema 780G con un programa de capacitación previo diseñado para dicho sistema. Los criterios de inclusión fueron: edad > 18 años y tiempo desde el inicio de SHAC > 3 meses. Se recogieron los datos de la glucometría a los 6 y 12 meses mediante la aplicación de test probabilísticos en spss.

Resultados: Se recogieron datos pertenecientes a 18 pacientes (4 varones y 14 mujeres) con una media de edad de $42 \pm 8,19$ años. En la MCG previa a la implantación de SHAC se observó un tiempo en rango 70-180 mg/dL (TIR) de $64,33\% \pm 18,8$ y una HbA1c estimada media (GMI) de $7,2\% \pm 0,63$. A los 6 meses se observa un aumento del TIR: $71,93\% \pm 15,5$ (p = 0,049), junto a una reducción de GMI: $6,7\% \pm 0,42\%$ (p = 0,036) y a los 12 meses TIR: $73,89\% \pm 13,34$ (p = 0,018) y GMI $6,9\% \pm 0,19$ (p = 0,025). La tasa de hiperglucemia > 250 mg/dl de $7,64 \pm 1,9\%$, se redujo de manera significativa a 6 meses $4,52\% \pm 0,03$ (p = 0,036) y 12 meses $6,54\% \pm 0,02$ (p = 0,025). La tasa de hiperglucemia comprendida entre 180-250 mg/dL basal $21,65\% \pm 2,32$ se redujo a los 6 meses al $19,31\% \pm 2,95$ (p = 0,09) y a los 12 meses al $17,55\% \pm 1,01$ (p = 0,043). El coeficiente de variación basal: $28\% \pm 5,36$ se redujo a los a los 12 meses: $26\% \pm 4,91\%$ (p = 0,396), así como la tasa de hipoglucemias totales, basal: $7,21\% \pm 2,97$, 6 meses: $2,27\% \pm 0,59$ (p = 0,22) y 12 meses: $1,98\% \pm 0,42$ (p = 0,291). La dosis total de insulina subcutánea se redujo de 44,95 U/24 h a 42,7/24 h (p = 0,145).

Conclusiones: El sistema hibrido de asa cerrada Minimed 780G logró tras un año de uso la

disminución de la HbA1c con aumento del tiempo en rango y disminución de la tasa de hiperglucemia, si bien el programa de reciclaje educativo previo al arranque de la bomba pudo actuar como factor limitante a la hora de interpretar los resultados citados.