

Endocrinología, Diabetes y Nutrición

P-011 - EFECTO DE ACACIA DEL NILO (*VACHELLIA NILOTICA*) SOBRE LA GLUCOSA EN UN MODELO ANIMAL DE DIABETES TIPO 2

V. González Rosa^a, L.O. Hafez^b, R. Jiménez^c, N. Abdelmageed^b, M.H. Abdel-Raheem^d, A.M. Wägner^a e Y. Brito Casillas^c

^aServicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, España. ^bDepartamento de Farmacología, Facultad de Veterinaria, Universidad de Sohag, Sohag, Egipto. ^cInstituto Universitario de Investigaciones Biomédicas y Sanitarias (iUIBS), Las Palmas de Gran Canaria, España. ^dDepartamento de Farmacología, Facultad de Medicina, Universidad de Assiut, Assiut, Egipto.

Resumen

Introducción y objetivos: La *acacia del Nilo (Vachellia nilotica)* se usa como hipoglucemiante, de forma tradicional, en algunos países africanos, pero la literatura científica muestra resultados escasos y contradictorios. Nuestro objetivo es evaluar su efecto agudo sobre la glucosa en un modelo murino de diabetes tipo 2.

Material y métodos: Se recogieron vainas de *Acacia nilótica* de Egipto y se realizó un extracto acuoso. A 9 ratones C57BL/6J de 16 semanas de edad se les administró dieta grasa (60%) como modelo de diabetes tipo 2 inducida. De forma aleatoria y cruzada, se administraron 3 dosis del extracto (100 mg, 200 mg y 300 mg) o vehículo (control) durante una sobrecarga oral de glucosa (SOG) (2 g/Kg), por vía intragástrica, tras un ayuno diurno de 6 h. La glucosa se midió (Glucomen Areo, Menarini) en sangre total de la cola antes y a los 15, 30, 45 y 60 minutos tras la administración (OEBA_ULPGC_09/2019). El bienestar fue monitorizado a lo largo de todo el estudio. Se comparó la glucemia en cada punto, el pico y el área bajo la curva (AUC), en valores absolutos (mg/dl) y normalizados (%), de cada dosis de tratamiento con el control. Se usaron las pruebas t-Student y Wilcoxon, para datos apareados (p significativa: p < 0,05).

Resultados: En comparación con el control, no hubo diferencias significativas para 100 mg/kg de acacia. Con 200 mg/kg se observó una glucemia inferior respecto al control en valores normalizados, a los 30 minutos (173 \pm 40 vs. 203 \pm 40%, p = 0,032) y para el AUC total (180 \pm 30 vs. 211 \pm 38%, p = 0,019) y el pico de glucosa (205 \pm 32 vs. 257 \pm 51% p 0,005). Con 300 mg/Kg, se observaron valores de glucemia superiores al control a los 30 (217 \pm 34 vs. 179 \pm 44% p = 0,011), 45 (211 \pm 46 vs. 172 \pm 54% p = 0,056) y 60 minutos (200 \pm 54 vs 157 \pm 35% p = 0,011). No se observaron efectos indeseados sobre el bienestar durante los 30 días del estudio.

Conclusiones: En este modelo animal de diabetes, la acacia del Nilo mostró efectos hipoglucemiantes moderados a 200 mg/Kg, pero hiperglucemiantes a 300 mg/Kg, sin mostrar efectos adversos. Estos hallazgos sugieren la importancia de la dosificación en el uso potencial de *Vachellia nilotica* como agente hipoglucemiante. Se subraya la necesidad de realizar más investigaciones para comprender estos efectos y su posible aplicabilidad.

Financiación: ULPGC 2022 (PIF2021-2022 ING-ARQ-2); FIISC (PIFIISC22/08); Erasmus Plus mobility (KA107).	