covid
Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición Argumentos a favor de la incorporación de los β-D-glucanos a la alimentación
Información de la revista
Vol. 54. Núm. 6.
Páginas 315-324 (junio 2007)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 54. Núm. 6.
Páginas 315-324 (junio 2007)
Revisiones
Acceso a texto completo
Argumentos a favor de la incorporación de los β-D-glucanos a la alimentación
Arguments in favor of incorporating β-D-glucans in food
Visitas
8371
Joaquín Pérez-Guisado
Autor para correspondencia
pv1peguj@uco.es

Correspondencia: Dr. J. Pérez-Guisado. Departamento de Medicina. Facultad de Medicina. Universidad de Córdoba. Avda. Menéndez Pidal, s/n. 14004 Córdoba. España.
Departamento de Medicina. Facultad de Medicina. Universidad de Córdoba. Córdoba. España
Este artículo ha recibido
Información del artículo

Los β-glucanos son polisacáridos formados por glucosa o derivados de ésta unidos entre sí mediante enlaces glucosídicos de tipo β, que son los que les confieren su función estructural. Como ejemplo más característico, tenemos la celulosa y como principales fuentes alimenticias de β-glucanos, los vegetales, el salvado de los cereales integrales y hongos como la levadura y las setas. Los β-glucanos tienen importantes efectos en la salud cuando se administran tanto a humanos como a animales, pues mejoran la salud cardiovascular gracias a un descenso del colesterol de las lipoproteínas de baja densidad (cLDL) y de la respuesta glucémica. Además, pueden tener un potente efecto inmunomodulador y muestran efectos radioprotectores, mieloproliferativos, antiinflamatorios y antitumorales y promueven una mayor estimulación del sistema inmunitario innato contra las infecciones. De todos los glucanos conocidos, el que muestra unos mayores efectos inmunomoduladores estimulando la lucha contra las infecciones y los tumores es la forma soluble del (1→3), (1→6)-β-D-glucano de Saccharomyces cerevisiae (levadura de cerveza).

La administración oral de β-D-glucano se tolera bien, permite mantener la palatabilidad de los alimentos y no tiene efectos tóxicos. El peso molecular y el grado y la naturaleza de las ramificaciones parecen ser los principales motivos de sus efectos bioactivos y funcionales. Teniendo en cuenta los saludables efectos de los glucanos, sería recomendable el empleo de alimentos ricos en estas sustancias, como los vegetales, la fibra soluble de los cereales y sobre todo la levadura de cerveza, cuyos glucanos son de los que se ha comunicado mayor número de propiedades.

Palabras clave:
Alimento funcional
Antiinfeccioso
Antitumoral
Fibra
Glucano
Hipolipemiante
Inmunoestimulante
Levadura
Receptores con patrón de reconocimiento
Respuesta glucémica

β-D-glucan belongs to a group of glucose polymers whose monomers are linked by β-glycosidic bonds, which give the glucan its structural function. The best-known example of glucan is cellulose. The main dietary sources of β-glucans are vegetables, cereal fibers, mushroom and fungi such as yeast. β-glucans have important effects on health, both in animals and humans. These polysaccharides improve cardiovascular health by decreasing low-density lipoprotein cholesterol and glycemic response. They also exert potent immunomodulatory effects through radioprotective, myeloproliferative, antiinflammatory and antitumoral properties and promote an increased antiinfective state of the innate immune system. Among all the known glucans, the soluble form of (1→3), 0(1→6)-β-D-glucan from Saccharomyces cerevisiae (beer yeast) has been shown to have the greatest immunomodulatory effects, enhancing anti-tumour and anti-infection functions. Oral administration of β-D-glucan is well tolerated, does not impair the palatability of food, and has no toxic effects. Their molecular weight, degree of branching, and nature of the branches are believed to determine their bioactive and functional effects. In view of the healthy effects of glucans, intake of foods rich in these substances can be recommended. Such foods include vegetables, soluble cereal fiber and especially beer yeast, which contains the glucans with the greatest number of beneficial properties reported.

Key words:
Functional food
Anti-infective
Antitumoral
Fiber
Glucan
Hypolypemic
Immunomodulatory
Yeast
Pattern recognition receptor
Glycemic response
El Texto completo está disponible en PDF
Bibliografía
[1.]
H. Saito, Y. Yoshioka, N. Uehara, J. Aketagawa, S. Tanaka, Y. Shibata.
Relationship between conformation and biological response for 1,3-β-D-glucans in the activation of coagulation factor G from limulus amebocyte Iysate and host mediated antitumor activity. Demonstration of single helix conformation as a stimulant.
Carbohydr Res, 217 (1991), pp. 181-190
[2.]
J. Perret, M. Bruneteau, G. Michel, M.F. Marias, J.P. Joseleau, P. Ricci.
Effect of growth conditions on the structure of β-D-glucans from Phytophthora parasitica Dastur, a phytopathogenic fungus.
Carb Polymers, 17 (1992), pp. 231-236
[3.]
J.T. Braaten, P.J. Wood, F.W. Scott, M.S. Wolynetz, M.K. Lowe, P. Bradley-White, et al.
Oat β-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects.
Eur J Clin Nutr, 48 (1994), pp. 465-474
[4.]
R. Törrönen, L. Kansanen, M. Uusitupa, O. Hanninen, O. Myllymaki, H. Harkonen, et al.
Effects of an oat bran concentrate on serum lipids in free-living men with mild to moderate hypercholesterolaemia.
Eur J Clin Nutr, 46 (1992), pp. 621-627
[5.]
M.U. Beer, E. Arrigoni, R. Amado.
Effects of oat gum on blood cholesterol levels in healthy young men.
Eur J Clin Nutr, 49 (1995), pp. 517-522
[6.]
R.E. Engstad, B. Robertsen.
Effect of structurally different beta-glucans on immune responses in Atlantic salmon.
J Mar Biotech, 3 (1995), pp. 203-207
[7.]
J.A. Bohn, J.N. BeMiller.
(1→3)-beta-D-glucans as biological response modifiers: a review of structure-function relationships.
Carbohydr Polym, 28 (1995), pp. 3-14
[8.]
Z. Xiao, C.A. Trincado, M.P. Murtaugh.
Beta-glucan enhancement of T cell IFN gamma response in swine.
Vet Immunol Immunopathol, 102 (2004), pp. 315-320
[9.]
D.J. Manners, A.J. Masson, J.C. Patterson.
The structure of a β-I,3-D-glucan from yeast cell walls.
Biochem J, 135 (1973), pp. 19-30
[10.]
D.J. Manners, A.J. Masson, J.C. Patterson, H. Björndal, B. Lindberg.
The structure of β-1,6-D-glucan from yeast cell walls.
Biochem J, 135 (1973), pp. 31-36
[11.]
J.S. Bacon, V.C. Farmer, D. Jones, J.F. Taylor.
The glucan component of the cell wall of baker's yeast (Saccharomyces cerevisiae) considered in relation to its ultrastructure.
Biochem J, 114 (1969), pp. 557-567
[12.]
S. Jamas, C.K. Rha, A.J. Sinskey.
Morphology of yeast cell wall as affected by genetic manipulation of P-1,6-glycosidic linkage.
Biotechn Bioeng, 28 (1986), pp. 769-784
[13.]
G. Kogan, J. Alfodi, L. Masler.
C 13-nrnr-spectroscopic investigation of two cell wall P-D-glucans.
Biopolymers, 27 (1988), pp. 1055-1063
[14.]
A.L. Jenkins, D.J. Jenkins, U. Zdravkovic, P. Wursch, V. Vuksan.
Depression of the glycemic index by high levels of beta-glucan fiber in two functional foods tested in type 2 diabetes.
Eur J Clin Nutr, 56 (2002), pp. 622-628
[15.]
K.M. Behall, D.J. Scholfield, J.G. Hallfrisch, H.G. Liljeberg-Elmstahl.
Consumption of both resistant starch and beta-glucan improves postprandial plasma glucose and insulin in women.
Diabetes Care, 29 (2006), pp. 976-981
[16.]
D.A. Kerckhoffs, G. Hornstra, R.P. Mensink.
Cholesterol-lowering effect of beta-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when beta-glucan is incorporated into bread and cookies.
Am J Clin Nutr, 78 (2003), pp. 221-227
[17.]
E. Naumann, A.B. Van Rees, G. Onning, R. Oste, M. Wydra, R.P. Mensink.
Beta-glucan incorporated into a fruit drink effectively lowers serum LDL-cholesterol concentrations.
Am J Clin Nutr, 83 (2006), pp. 601-605
[18.]
M. Luhaloo, A.-C. Martensson, R. Andersson, P. Aman.
Compositional analysis and viscosity measurements of commercial oat brans.
J Sci Food Agric, 76 (1998), pp. 142-148
[19.]
N.G. Asp, B. Mattsson, G. Önning.
Variation in dietary fibre, β-glucan, starch, protein, fat and hull content of oats grown in Sweden 1987-1989.
Eur J Clin Nutr, 46 (1992), pp. 31-37
[20.]
E.K. Lund, J.M. Gee, J.C. Brown, P.J. Wood, I.T. Johnson.
Effect of oat gum on the physical properties of the gastrointestinal contents and on the uptake of D-galactose and cholesterol by rat small intestine in vitro.
Br J Nutr, 62 (1989), pp. 91-101
[21.]
T. Taguchi.
[Effects of lentinan in advanced or recurrent cases of gastric, colorectal, and breast cancer].
Gan To Kagaku Ryoho, 10 (1983), pp. 387-393
[22.]
l. Hishida, H. Nanba, H. Kuoda.
Antitumor activity exhibited by orally administered extract from fruit body of Grifola frondosa (maitake).
Chem Pharm Bull, 36 (1988), pp. 1819-1827
[23.]
M. Marchetti, S. Pisani, V. Pietropaolo, L. Seganti, R. Nicoletti, A. Degener, et al.
Antiviral effect of a polysaccharide from Sclerotium glucanicum toward herpes simplex virus type 1 infection.
Planta Med, 62 (1996), pp. 303-307
[24.]
V.E. Ooi, F. Liu.
Immunomodulation and anti-cancer activity of polysaccharide-protein complexes.
Curr Med Chem, 7 (2000), pp. 715-729
[25.]
J.A. Bobn, J.N. BeMiller.
(1→3)-(β-D-glucans as biological response modifiers: a review of structure-functional activity relationships.
Carbohydrate Polymers, 28 (1995), pp. 3-14
[26.]
D.L. Williams.
Overview of (1→3)-beta-D-glucan immunobiology.
Med Inflamm, 6 (1997), pp. 247-250
[27.]
G. Lehne, B. Haneberg, P. Gaustad, P.W. Johansen, H. Preus, T.G. Abrahamsen.
Oral administration of a new soluble branched beta-1,3-D-glucan is well tolerated and can lead to increased salivary concentrations of immunoglobulin A in healthy volunteers.
Clin Exp Immunol, 143 (2006), pp. 65-69
[28.]
E. Wakshull, D. Brunke-Reese, J. Lindermuth, L. Fisette, R.S. Nathans, J.J. Crowley, et al.
PGG-glucan, a soluble beta-(1,3)-glucan, enhances the oxidative burst response, microbicidal activity, and activates an NF-kappa B-like factor in human PMN: evidence for a glycosphingolipid beta-(1,3)-glucan receptor.
Immunopharmacology, 41 (1999), pp. 89-107
[29.]
D.S. Kernodle, H. Gates, A.B. Kaiser.
Prophylactic anti-infective activity of poly-[1→6]-beta-D-glucopyranosyl-[1→3]-beta-D-glucopryanose glucan in a guinea pig model of staphylococcal wound infection.
Antimicrob Agents Chemother, 42 (1998), pp. 545-549
[30.]
E.P. Dellinger, T.J. Babineau, P. Bleicher, A.B. Kaiser, G.B. Seibert, R.G. Postier, et al.
Effect of PGG-glucan on the rate of serious postoperative infection or death observed after high-risk gastrointestinal operations. Betafectin Gastrointestinal Study Group.
Arch Surg, 134 (1999), pp. 977-983
[31.]
D.L. Williams, T. Ha, C. Li, J.H. Kalbfleisch, J.J. Laffan, D.A. Ferguson.
Inhibiting early activation of tissue nuclear factor-kappa B and nuclear factor interleukin 6 with (1→3)-beta-D-glucan increases long-term survival in polymicrobial sepsis.
Surgery, 126 (1999), pp. 54-65
[32.]
J. De Felippe, M. Da Rocha e Silva, F.M.B. Maciel, A. De Macedo Soares, N.F. Mendes.
Infection prevention in patients with severe trauma with the immunomodulator beta 1-3 polyglucose (glucan).
Surg Gynecol Obstet, 177 (1993), pp. 383-388
[33.]
W. Browder, D. Williams, H. Pretus, G. Olivero, F. Enrichens, P. Mao, et al.
Beneficial effect of enhanced macrophage function in the trauma patient.
Ann Surg, 211 (1990), pp. 605-613
[34.]
T.J. Babineau, P. Marcello, W. Swails, A. Kenler, B. Bistrian, R.A. Forse.
Randomized phase I/II trial of a macrophage-specific immunomodulator (PGG-glucan) in high-risk surgical patients.
Ann Surg, 220 (1994), pp. 60-69
[35.]
T.J. Babineau, A. Hackford, A. Kenler, B. Bistrian, R.A. Forse, P.G. Fairchild, et al.
A phase II multicenter, double-blind, randomized, placebo-controlled study of three dosages of an irnmunomodulator (PGG-glucan) in high-risk surgical patients.
Arch Surg, 129 (1994), pp. 1204-1210
[36.]
G.R. Huff, W.E. Huff, N.C. Rath, G. Tellez.
Limited treatment with beta-1,3/1,6-glucan improves production values of broiler chickens challenged with Escherichia coli.
Poult Sci, 85 (2006), pp. 613-618
[37.]
D. Wei, D. Williams, W. Browder.
Activation of AP-1 and SP1 correlates with wound growth factor gene expression in glucan-treated human fibroblasts.
Int Immunopharmacol, 2 (2002), pp. 1163-1172
[38.]
S.J. Delatte, J. Evans, A. Hebra, W. Adamson, H.B. Othersen, E.P. Tagge.
Effectiveness of beta-glucan collagen for treatment of partial-thickness burns in children.
J Pediatr Surg, 36 (2001), pp. 113-118
[39.]
C.A. Portera, E.J. Love, L. Memore, L. Zhang, A. Muller, W. Browder, et al.
Effect of macrophage stimulation on collagen biosynthesis in the healing wound.
Am Surg, 63 (1997), pp. 125-131
[40.]
M. Hofer, M. Pospisil.
Glucan as stimulator of hematopoiesis in normal and gamma-irradiated mice. A survey of the authors’ results.
Int J Immunopharmacol, 19 (1997), pp. 607-609
[41.]
M.L. Patchen, N.R. DiLuzio, P. Jacques, T.J. MacVittie.
Soluble polyglycans enhance recovery from cobalt-60-induced hemopoietic injury.
J Biol Response Mod, 3 (1984), pp. 627-633
[42.]
M.L. Patchen, M.M. D’Alesandro, I. Brook, W.F. Blakely, T.J. Mac-Vittie.
Glucan: mechanisms involved in its ‘radioprotective’ effect.
J Leukoc Biol, 42 (1987), pp. 95-105
[43.]
C. Burgaleta, D.W. Golde.
Effect of glucan on granulopoiesis and macrophage genesis in mice.
Cancer Res, 37 (1977), pp. 1739-1742
[44.]
E.O. Niskanen, C. Burgaleta, M.J. Cline, D.W. Golde.
Effect of glucan, a macrophage activator, on murine hemopoietic cell proliferation in diffusion chambers in mice.
Cancer Res, 38 (1978), pp. 1406-1409
[45.]
J.L. Turnbull, M.L. Patchen, D.T. Scadden.
The polysaccharide, PGG-glucan, enhances human myelopoiesis by direct action independent of and additive to early-acting cytokines.
Acta Haematol, 102 (1999), pp. 66-71
[46.]
J. De Felippe Junior, M. Da Rocha e Silva Junior, F.M. Maciel, M. Soares Ade, N.F. Mendes.
Infection prevention in patients with severe multiple trauma with the immunomodulator beta 1-3 polyglucose (glucan).
Surg Gynecol Obstet, 177 (1993), pp. 383-388
[47.]
C. Li, T. Ha, J. Kelley, X. Gao, Y. Qiu, R.L. Kao, et al.
Modulating Toll-like receptor mediated signaling by (1–3)-beta-D-glucan rapidly induces cardioprotection.
Cardiovasc Res, 61 (2004), pp. 538-547
[48.]
J. Soltys, M.T. Quinn.
Modulation of endotoxin-and enterotoxin-induced cytokine release by in vivo treatment with beta-(1,6)-branched beta-(1,3)-glucan.
Infect Immunol, 67 (1999), pp. 244-252
[49.]
D.S. Kernodle, H. Gates, A.B. Kaiser.
Prophylactic anti-infective activity of poly-[1→6]-beta-D-glucopyranosyl-[1→3]-beta-D-glucopryanose glucan in a guinea pig model of staphylococcal wound infection.
Antimicrob Agents Chemother, 42 (1998), pp. 545-549
[50.]
G.J. Bowers, M.L. Patchen, T.J. MacVittie, E.F. Hirsch, M.P. Fink.
Glucan enhances survival in an intraabdominal infection model.
J Surg Res, 47 (1989), pp. 183-188
[51.]
J. Liang, D. Melican, L. Cafro, G. Palace, L. Fisette, R. Armstrong, et al.
Enhanced clearance of a multiple antibiotic resistant Staphylococcus aureus in rats treated with PGG-glucan is associated with increased leukocyte counts and increased neutrophil oxidative burst activity.
Int J Immunopharmacol, 20 (1998), pp. 595-614
[52.]
K. Jung, Y. Ha, S.K. Ha, D.U. Han, D.W. Kim, W.K. Moon, et al.
Antiviral effect of Saccharomyces cerevisiae beta-glucan to swine influenza virus by increased production of interferongamma and nitric oxide.
J Vet Med B Infect Dis Vet Public Health, 51 (2004), pp. 72-76
[53.]
C. Kirmaz, P. Bayrak, O. Yilmaz, H. Yuksel.
Effects of glucan treatment on the Th1/Th2 balance in patients with allergic rhinitis: a double-blind placebo-controlled study.
Eur Cytokine Netw, 16 (2005), pp. 128-134
[54.]
M.B. Harler, J. Reichner.
Increased neutrophil motility by betaglucan in the absence of chemoattractant.
Shock, 16 (2001), pp. 419-424
[55.]
D.Y. Lee, I.H. Ji, H.I. Chang, C.W. Kim.
High-level TNF-alpha secretion and macrophage activity with soluble beta-glucans from Saccaromyces cerevisiae.
Biosci Bioteclmol Biochem, 66 (2002), pp. 233-238
[56.]
J.K. Czop, D.T. Fearon, K.F. Austen.
Opsonin-independent phagocytosis of activators of the altemative complement pathway by human monocytes.
J Immunol, 120 (1978), pp. 1132-1138
[57.]
R. Adam, F. Kuczera, H. Kohler, H. Schroten.
Superoxide anion generation in human milk macrophages: opsonin-dependent versus opsonin-independent stimulation compared with blood monocytes.
Pediatr Res, 49 (2001), pp. 435-439
[58.]
N. Ohno, T. Hashimoto, Y. Adachi, T. Yadomae.
Conformation dependency of nitric oxide synthesis of murine peritoneal macrophages by beta-glucans in vitro.
Immunol Lett, 53 (1996), pp. 157-163
[59.]
G. Abel, J.K. Czop.
Stimulation of human monocyte 13-glucan receptors by glucan particles induces production of TNF-α and IL-1(.
Int J lnmunopharmacol, 14 (1992), pp. 1363-1373
[60.]
M.J. Janusz, K.F. Austen, J.K. Czop.
Isolation of a yeast heptaglucoside that inhibits monocyte phagocytosis of zymosan particles.
J Immunol, 142 (1989), pp. 959-965
[61.]
M.X. Zhang, T.T. Brandhorst, T.R. Kozel, B.S. Klein.
Role of glucan and surface protein BAD1 in complement activation by Blastomyces dermatitidis yeast.
Infect Immunol, 69 (2001), pp. 7559-7564
[62.]
Fleischer LC, Gerber G, Gremmels HD, Lippert E, Westphal G. Effect of (1→3),(1→6)-β-D-glucan from Saccharomyces cerevisiae on acute phase proteins in the lactating sow. 2nd European Colloquium on Animal Acute Phase Proteins. Bonn, 11-13 de mayo de 2001.
[63.]
J.L. Turnbull, M.L. Patchen, D.T. Scadden.
The polysaccharide, PGG-glucan, enhances human myelopoiesis by direct action independent of and additive to early-acting cytokines.
Acta Haematol, 102 (1999), pp. 66-71
[64.]
L.C. Fleischer, G. Gerber, R.W. Liezenga, E. Lippert, M.A. Scholl, G. Westphal.
[Blood cells and plasma proteins of chickens fed a diet with (1→3),(1→6)-β-D-glucan of S. cerevisiae and enrofloxacin].
Arch Anim Nutr, 53 (2000), pp. 59-73
[65.]
S.L. De Oliveira, M.F. Da Silva, A.M. Soares, C.L. Silva.
Cell wall fractions from Paracoccidioides brasiliensis induce hypergammaglobulinemia.
Mycopathologia, 121 (1993), pp. 1-5
[66.]
P. Kougias, D. Wei, P.J. Rice, H.E. Ensley, J. Kalbtleisch, D.L. Williams, et al.
Normal human fibroblasts express pattern recognition receptors for fungal (1→3)-β-D-glucans.
lnfect lmmunol, 69 (2001), pp. 3933-3938
[67.]
F. Zülli, F. Suter, H. Biltz, H.P. Nissen.
Improving skin function with CM-glucan, a biological response modifier from yeast.
Int J Cosmetic Sci, 20 (1998), pp. 79-86
[68.]
A.O. Tzianabos, R.L. Cisneros.
Prophylaxis with the immunomodulator PGG glucan enhances antibiotic efficacy in rats infected with antibiotic-resistant bacteria.
Ann N Y Acad Sci, 797 (1996), pp. 285-287
[69.]
X. Duan, M. Ackerly, E. Vivier, P. Anderson.
Evidence for involvement of betaglucan-binding cell surface lectins in human natural killer cell function.
Cell Immunol, 157 (1994), pp. 393-402
[70.]
N.K. Cheung, S. Modak, A. Vickers, B. Knuckles.
Orally administered beta-glucan enhance anti-timor effects of monoclonal antibodies.
Cancer Immunol Immunother, 51 (2002), pp. 557-564
[71.]
P.WA. Mansell, H. Ichinose, R.J. Reed, E.T. Krementz, R. McNamee, N.R. Di Luzio.
Macrophage-mediated destruction of human malignant cells in vivo.
J Natl Cancer Inst, 54 (1975), pp. 571-580
[72.]
P.WA. Mansell, N.R. Di Luzio, R. McNamee, G. Rowden, J.W. Proctor.
Recognition factors and nonspecific macrophage activation in the treatrnent of neoplastic disease.
Ann N Y Acad Sci, 277 (1976), pp. 20-44
[73.]
L. Israel, R. Edelstein.
Treatment of cutaneous and subcutaneous metastatic tumor with intralesional glucan.
lmmune modulation and control of neoplasia by adjuvant therapy, pp. 244-254
[74.]
H. Ueno.
Beta-1,3-D-glucan, its immune effect and its clinical use.
Jap J Soco Terminal Syst Dis, 6 (2002), pp. 151-154
[75.]
R. Medzhitov, C.A. Janeway Jr.
Innate immunity: the virtues of a nonclonal system of recognition.
Cell, 91 (1997), pp. 295-298
[76.]
D.D. Poutsiaka, M. Mengozzi, E. Vannier, B. Sinha, C.A. Dinarello.
Cross-linking of the β-glucan receptor on human monocytes results in interleukin-1 receptor antagonist but not interleukin-1 production.
Blood, 82 (1993), pp. 3695-3700
[77.]
A. Müller, J. Raptis, P.J. Rice, J.H. Kalbfleisch, R.O. Stout, H.E. Ensley, et al.
The influence of glucan polymer structure and solution confirmation on binding to (1→3)-β-D-glucan receptors in a human monocyte-like cell line.
Glycobiology, 10 (2000), pp. 339-346
[78.]
A. Müller, P.J. Rice, R.E. Ensley, P.S. Coogan, J.H. Kalbfleisch, J.L. Kelley, et al.
Receptor binding and internalization of a water soluble (1→3)-β-D-glucan biologic response modifier in two monocyte/macrophage cell lines.
J lmmunol, 156 (1996), pp. 3418-3425
[79.]
G.O. Brown, P.R. Taylor, D.M. Reid, J.A. Willment, D.L. Williams, L. Martinez-Pomares, et al.
Dectin-1 is a major beta-glucan receptor on macrophages.
J Exp Med, 196 (2002), pp. 407-412
[80.]
J.A. Willment, S. Gordon, G.D. Brown.
Characterization of the human beta-glucan receptor and its alternatively spliced isoforms.
J Biol Chem, 276 (2001), pp. 43818-43823
[81.]
I.L. Ahren, D.L. Williams, P.J. Rice, A. Forsgren, K. Riesbeck.
The importance of a beta-glucan receptor in the nonopsonic entry of nontypeable Haemophilus influenzae into human monocytic and epithelial cells.
J Infect Dis, 184 (2001), pp. 150-158
[82.]
E.P. Lowe, D. Wei, P.J. Rice, C. Li, J. Kalbfleisch, I.W. Browder, et al.
Human vascular endothelial cells express pattern recognition receptors for fungal glucans which stimulates nuclear factor kappa B activation and interleukin 8 production.
Ann Surg, 68 (2002), pp. 508-517
[83.]
B.P. Thornton, V. Vetvicka, M. Pitman, R.C. Goldman, G.D. Ross.
Analysis of the sugar specificity and molecular location of the beta-glucan-binding lectin site of complement receptor type 3.
J lmmunol, 156 (1996), pp. 1235-1246
[84.]
J.W. Zimmerman, J. Lindermuth, P.A. Fish, G.P. Palace, T.T. Stevenson, D.E. DeMong.
A novel carbohydrate-glycosphingolipid interaction between a beta-(1→3)-glucan immunomodulator, PGG-glucan, and lactosylceramide of human leukocytes.
J Biol Chem, 273 (1998), pp. 22014-22020
[85.]
E. Wakshull, D. Brunke-Reese, J. Lindermuth, L. Fisette, R.S. Nathans, J.J. Crowley, et al.
PGG-glucan, a soluble beta-(1,3)-glucan, enhances the oxidative burst response, microbicidal activity, and activates an NF-kappa B-like factor in human PMN: evidence for a glycosphingolipid beta-(1,3)-glucan receptor.
Immunopharmacology, 41 (1999), pp. 89-107
[86.]
P.Y. Hahn, S.E. Evans, T.J. Kottom, J.E. Standing, R.E. Pagano, A.H. Limper.
Pneumocystis carinii cell wall beta-glucan induces release of MIP-2 from alveolar epithelial cells via a lactosylceramide mediated mechanism.
J Biol Chem, 278 (2003), pp. 2043-2050
[87.]
P.J. Rice, J.L. Kelley, G. Kogan, H.E. Ensley, J.H. Kalbfleisch, I.W. Browder, et al.
Human monocyte scavenger receptors are pattem recognition receptors for (1→3)-β-D-glucans.
J Leukoc Biol, 72 (2002), pp. 140-146
[88.]
P.R. Taylor, G.D. Brown, D.M. Reid, J.A. Willment, L. Martinez-Pomares, S. Gordon, et al.
The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/ macrophage and neutrophil lineages.
J Immunol, 169 (2002), pp. 3876-3882
[89.]
B.N. Gantner, R.M. Simmons, S.J. Canavera, S. Akira, D.M. Underhill.
Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2.
J Exp Med, 197 (2003), pp. 1107-1117
[90.]
J. Herre, A.S. Marshall, E. Caron, A.D. Edwards, D.L. Williams, E. Schweighoffer.
Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages.
Blood, 104 (2004), pp. 4038-4045
[91.]
T. Kikuchi, N. Ohno, T. Ohno.
Maturation of dendritic cells induced by Candida beta-D-glucan.
Int Immunopharmacol, 2 (2002), pp. 1503-1508
[92.]
M.J. Janusz, K.F. Austen, J.K. Czop.
Lysosomal enzyme release from human monocytes by particulate activators is mediated by beta-glucan inhibitable receptors.
J lmmunol, 138 (1987), pp. 3897-3901
[93.]
E. Lowe, P. Rice, T. Ha, C. Li, J. Kelley, H.E. Ensley, et al.
A (1→3)-β-D-linked heptasaccharide is the unit ligand for glucan pattem recognition receptors on human monocytes.
Microbes Infect, 3 (2001), pp. 789-797
[94.]
R.B. Yang, M.R. Mark, A.L. Gurney, P.J. Godowski.
Signaling events induced by lipopolysaccharide-activated toll-like receptor 2.
J Immunol, 163 (1999), pp. 639-643
[95.]
J.A. Hoffmann, F.C. Kafatos, C.A. Janeway Jr, R.A. Ezekowitz.
Phylogenetic perspectives in innate immunity.
Science, 284 (1999), pp. 1313-1318
[96.]
D.S. Adams, S.C. Pero, J.B. Petro, R. Nathans, W.M. Mackin, E. Wakshull.
PGG-glucan activates NF-κB-like and NF-IL-6-like transcription factor complexes in a murine monocytic cell line.
J Leukoc Biol, 62 (1997), pp. 865-873
[97.]
J. Battle, T. Ha, C. Li, V. Delia Baffa, P. Rice, J. Kalbfleisch, et al.
Ligand binding to the (1→3)-β-D-glucan receptor stimulates NFκB activation, but not apoptosis in U937 cells.
Biochem Biophys Res Comm, 249 (1998), pp. 499-504
[98.]
D.L. Williams, A. Mueller, W. Browder.
Preclinical and clinical evaluation of carbohydrate immunopharmaceuticals in the prevention of sepsis and septic sequelae.
J Endotoxin Res, 2 (1995), pp. 203-208
[99.]
C.S. Engstad, R.E. Engstad, J.O. Olsen, B. Osterud.
The effect of soluble beta-1,3-glucan and lipopolysaccharide on cytokine production and coagulation activation in whole blood.
Int Immunopharmacol, 2 (2002), pp. 1585-1597
Copyright © 2007. Sociedad Española de Endocrinología y Nutrición
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos