covid
Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición El GLP-1: acción biológica y posibles efectos terapéuticos
Información de la revista
Vol. 53. Núm. 4.
Páginas 256-262 (abril 2006)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 53. Núm. 4.
Páginas 256-262 (abril 2006)
Revisiones
Acceso a texto completo
El GLP-1: acción biológica y posibles efectos terapéuticos
Glp-1: biological action and possible therapeutic effects
Visitas
32584
I. Valverde
Autor para correspondencia
ivalverde@fjd.es

Correspondencia: Dra. I. Valverde. Departamento de Metabolismo, Nutrición y Hormonas. Fundación Jiménez Díaz. Avda. Reyes Católicos, 2. 28040 Madrid. España.
, J. Cancelas, M.L. Villanueva-Peñacarrillo
Departamento de Metabolismo, Nutrición y Hormonas. Fundación Jiménez Díaz. Madrid. España
Este artículo ha recibido
Información del artículo

El GLP-1 (glucagon-like peptide-1) es una hormona con carácter de incretina que contribuye al control de la homeostasis de la glucosa, y que por su acción insulinotrópica, insulinotrófica y también insulinomimética, se está considerando para el tratamiento de la diabetes mellitus tipo 2. In vitro, el GLP-1 tiene efectos anabólicos sobre el metabolismo hepático de la glucosa en la rata normal y diabética, y sobre el del músculo y la grasa de la rata y del hombre; en el tejido adiposo, el GLP-1 es, además, lipolítico y lipogénico. En estos 3 tejidos extrapancreáticos, el GLP-1 parece actuar a través de receptores específicos, distintos en estructura y/o vía de señalización del pancreático, sobre los que se ha propuesto un inositolfosfoglicano como posible segundo mensajero. Por otro lado, la respuesta secretora de la célula β al GLP-1, modulada en condiciones normales por la concentración extracelular de glucosa, está alterada en la diabetes tipo 2, debido, posiblemente, a la imposibilidad de la célula para reconocer a la hexosa; sin embargo, nutrientes no glucídicos, capaces de sortear los defectos específicos de reconocimiento de la célula β diabética hacia la glucosa, como son los ésteres de ácidos dicarboxílicos, potencian y/o prolongan su acción insulinotrópica. Además, el GLP-1 no sólo ejerce un papel regulador de la ingestión de alimentos, induciendo sensación de saciedad, sino que también parece tener acciones beneficiosas en síndromes de carácter neurodegenerativo central y periférico. En cualquier caso, el valor del papel potencial terapéutico del GLP-1 no solo en la diabetes sino también en la obesidad y en las enfermedades cardíacas y nerviosas, es un hecho que no se debe ignorar, cuyo mecanismo de acción concreto, no del todo conocido, requiere aclaración.

Palabras clave:
GLP-1
Incretina
Diabetes
Obesidad
Alzheimer

Glucagon-like peptide-1 (GLP-1) is an incretin hormone that contributes to the control of glucose homeostasis. Because of its insulinotropic, insulinotrophic and insulinomimetic actions, it is being considered for the treatment of type 2 diabetes mellitus. In vitro, GLP-1 has anabolic effects on glucose metabolism in the liver of normal and diabetic rats and in rat and human skeletal muscle and fat; moreover, in fat tissue, GLP-1 is also lipolytic and lipogenic. In these three extrapancreatic tissues, GLP-1 seems to act through specific receptors, distinct in structure and/or signaling pathway from pancreatic one, for which an inositolphosphoglycan has been proposed as a possible second messenger. The secretory response of β cells to GLP-1, modulated in normal conditions by the extracellular glucose concentration, is altered in type 2 diabetes mellitus, possibly due to the inability of the cell to recognize the hexose; however, non-glucose nutrients able to bypass the specific hexose recognition defects of the diabetic β cell, such as dicarboxylic acid esters, potentiate and/or prolong the insulinotropic action of GLP-1. Moreover, GLP-1 not only plays a regulatory role in food intake, by inducing satiety, but also seems to have beneficial effects on central and peripheral neurodegenerative syndromes. The value of the potential therapeutic role of GLP-1, not only in diabetes but also in obesity and cardiac and central nervous system diseases, should not be ignored, and its mechanism of action, which is not clearly understood, requires elucidation.

Key words:
GLP-1
Incretin
Diabetes
Obesity
Alzheimer
El Texto completo está disponible en PDF
Bibliografía
[1.]
G.I. Bell, R. Sánchez-Pescador, P.J. Laybourn, R.C. Najarian.
Exon duplication and divergence in the human preproglucagon gene.
Nature, 304 (1983), pp. 368-371
[2.]
S. Mojsov, G. Heinrich, I.B. Wilson, M. Ravazzola, L. Orci, J.F. Habener.
Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing.
J Biol Chem, 261 (1986), pp. 11880-11889
[3.]
U. Novak, A. Wilks, G. Buell, S. McEwen.
Identical mRNA for preproglucagon in pancreas and gut.
Eur J Biochem, 164 (1987), pp. 553-558
[4.]
L. Thim, A.J. Moody.
Purification and chemical characterization of a glicentin-related pancreatic peptide (pro-glucagon fragment) from porcine pancreas.
Biochim Biophys Acta, 703 (1982), pp. 134-141
[5.]
C. Yanaihara, T. Matsumoto, Y.M. Hong, N. Yanaihara.
Isolation and characterization of glicentin C-terminal hexapeptide in porcine pancreas.
FEBS Lett, 189 (1985), pp. 50-56
[6.]
C. Patzelt, E. Schiltz.
Conversion of proglucagon in pancreatic alpha cells: the major end products are glucagon and a single peptide, the major proglucagon fragment, that contains two glucagon-like sequences.
Proc Nat Acad Sci USA, 81 (1984), pp. 5007-5011
[7.]
L. Thim, A.J. Moody.
The primary structure or porcine glicentin (proglucagon).
Regul Pept, 2 (1981), pp. 139-150
[8.]
D. Bataille, A.M. Coudray, M. Carlqvist, G. Rosselin, V. Mutt.
Isolation of glucagon-37 (bioactive enteroglucagon/oxyntomodulin) from porcine jejunum-ileum. Isolation of the peptide.
FEBS Lett, 146 (1982), pp. 73-78
[9.]
C. Orskov, J.J. Holst, S. Knuhtsen, F.G.A. Baldissera, S.S. Poulsen, O.V. Nielsen.
Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas.
Endocrinology, 119 (1986), pp. 1467-1475
[10.]
B. Kreymann, G. Williams, M.A. Ghatei, S.R. Bloom.
Glucagonlike peptide-1 7-36: a physiological incretin in man.
Lancet, 2 (1987), pp. 1300-1304
[11.]
J.J. Holst, C. Orskov, O.V. Nielsen, T.W. Schwartz.
Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut.
FEBS Lett, 211 (1987), pp. 169-174
[12.]
B. Kreymann, Y. Yiangou, S. Kanse, G. Williams, M.A. Ghatei, S.R. Bloom.
Isolation and characterization of GLP-1(7-36)amide from rat intestine.
FEBS Lett, 242 (1988), pp. 167-170
[13.]
C. Orskov, M. Bersani, A.H. Johnsen, P. Hojrup, J.J. Holst.
Complete sequences of glucagon-like peptide-1 from human and pig small intestine.
J Biol Chem, 264 (1989), pp. 12826-12829
[14.]
S. Seino, M. Welsh, G.J. Bell, S.J. Chan, D.F. Steiner.
Mutation in the guinea-pig preproglucagon gene are restricted to a specific portion of the prohormone sequence.
FEBS Lett, 203 (1986), pp. 25-30
[15.]
R.M. Elliott, L.M. Morgan, J.A. Tredger, S. Deacon, J. Wright, V. Marks.
Glucagon-like peptide-1 (7-36)amide and glucosedependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns.
J Endocrinol, 138 (1993), pp. 159-166
[16.]
M. Nauck, M.M. Heimesaat, C. Ørskov, J.J. Holst, R. Ebert, W. Creutzfeldt.
Preserved incretin activity of glucagon-like peptide-1 (7-36 amide), but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus.
J Clin Invest, 91 (1993), pp. 301-307
[17.]
W. Creutzfeldt.
The entero-insular axis in type 2 diabetes-incretins as therapeutic agents.
Exp Clin Endocrinol Diabetes, 109 (2001), pp. S288-S303
[18.]
R. Komatsu, T. Matsuyama, M. Namba, N. Watanabe, H. Itoh, N. Kono, et al.
Glucagonostatic and insulinotropic action of glucagonlike peptide 1-(7-37)-amide.
Diabetes, 38 (1989), pp. 902-905
[19.]
E.G. Siegel, A. Schulze, W.E. Schmidt, W. Creutzfeldt.
Comparison of the effect of GIP and GLP-1(7-36amide) on insulin release from rat pancreatic islets.
Eur J Clin Invest, 22 (1992), pp. 154-157
[20.]
D.M. Nathan, E. Schreiber, H. Fogel, S. Mojsov, J.F. Habener.
Insulinotropic action of glucagonlike peptide-I-(7-37) in diabetic and nondiabetic subjects.
Diabetes Care, 15 (1992), pp. 270-276
[21.]
R. Göke, B. Wagner, H.C. Fehmann, B. Göke.
Glucose-dependency of the insulin stimulatory effect of glucagon-like peptide-1(7-36)amide on the rat pancreas.
Res Exp Med Berl, 193 (1993), pp. 97-103
[22.]
M.A. Nauck, N. Kleine, C. Orskov, J.J. Holst, B. Willms, W. Creutzfeldt.
Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients.
Diabetologia, 36 (1993), pp. 741-744
[23.]
W.O. Creutzfeldt, N. Kleine, B. Willms, C. Orskov, J.J. Holst, M.A. Nauck.
Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I(7-36) amide in type I diabetic patients.
Diabetes Care, 19 (1996), pp. 580-586
[24.]
D.J. Drucker, J. Philippe, S. Mojsov, W.L. Chick, J.F. Habener.
Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line.
Proc Natl Acad Sci U S A, 84 (1987), pp. 3434-3438
[25.]
H.C. Fehmann, J.F. Habener.
Insulinotropic hormone glucagonlike peptide-I(7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells.
Endocrinology, 130 (1992), pp. 159-166
[26.]
P.L. Brubaker, D.J. Drucker.
Minireview. Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system.
Endocrinology, 145 (2004), pp. 2653-2659
[27.]
B.T.G. Schjoldager, D.E. Mortensen, J. Christiansen, C. Orskov, J.J. Holst.
GLP-1 (glucagon-like peptide 1) and truncated GLP-1, fragments of human proglucagon, inhibits gastric acid secretion in man.
Dig Dis Sci, 34 (1989), pp. 703-708
[28.]
D.J. O’Halloran, G.C. Nikou, B. Kreymann, M.A. Ghatei, S.R. Bloom.
Glucagon-like peptide-1(7-36)NH2: a physiological inhibitor of gastric acid secretion in man.
J Endocrinol, 126 (1990), pp. 169-173
[29.]
A. Wettergren, B. Schjoldager, P.E. Mortensen, J. Myhre, J. Christiansen, J.J. Holst.
Truncated GLP-1 (proglucagon 78-107-amide) inhibits gastric and pancreatic functions in human.
Dig Dis Sci, 38 (1993), pp. 665-673
[30.]
B. Willms, J. Werner, J.J. Holst, C. Orskov, W. Creutzfeldt, M.A. Nauck.
Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: effects of exogenous glucagon-like peptide-1 (GLP-1-(7-36)amide in type 2 [noninsulindependent]) diabetic patients.
J Clin Endocrinol Metab, 81 (1996), pp. 327-332
[31.]
M. Gutniak, C. Orskov, J.J. Holst, B. Ahrén, S. Efendic.
Antidiabetogenic effects of glucagon-like peptide-1(7-36)amide in normal subjects and patients with diabetes mellitus.
N Engl J Med, 326 (1992), pp. 1316-1322
[32.]
J. Dupre, M.T. Behme, I.M. Hramiak, P. Mcfarlane, M.P. Williamson, P. Zabel, et al.
Glucagon-like peptide I reduces postprandial glycemic excursions in IDDM.
Diabetes, 44 (1995), pp. 626-630
[33.]
L. Juntti-Berggren, J. Pigon, F. Karpe, A. Hamsten, M. Gutniak, L. Vignati, et al.
The antidiabetogenic effect of GLP-1 is maintained during a 7-day treatment period and improves diabetic dyslipoproteinemia in NIDDM patients.
Diabetes Care, 19 (1996), pp. 1200-1206
[34.]
M.A. Nauck, D. Wollschlager, J. Werner, J.J. Holst, C. Orskov, W. Creutzfeldt, et al.
Effects of subcutaneous glucagon-like peptide 1 (GLP-1 [7-36 amide]) in patients with NIDDM.
Diabetologia, 39 (1996), pp. 1546-1553
[35.]
M.K. Gutniak, H. Larsson, S.J. Heiber, O.T. Juneskans, J.J. Holst, B. Ahren.
Potential therapeutic levels of glucagon-like peptide I achieved in humans by a buccal tablet.
Diabetes Care, 19 (1996), pp. 843-848
[36.]
J.F. Todd, J.P. Wilding, C.M. Edwards, F.A. Khan, M.A. Ghatei, S.R. Bloom.
Glucagon-like peptide-1 (GLP-1): a trial of treatment in non-insulin-dependent diabetes mellitus.
Eur J Clin Invest, 27 (1997), pp. 533-536
[37.]
J. Rachman, B.A. Barrow, J.C. Levy, R.C. Turner.
Near-normalisation of diurnal glucose concentrations by continuous administration of glucagon-like peptide-1 (GLP-1) in subjects with NIDDM.
Diabetologia, 40 (1997), pp. 205-211
[38.]
J. Larsen, B. Hylleberg, K. Ng, P. Damsbo.
Glucagon-like peptide-1 infusion must be maintained for 24 h/day to obtain acceptable glycemia in type 2 diabetic patients who are poorly controlled on sulphonylurea treatment.
Diabetes Care, 24 (2001), pp. 1416-1421
[39.]
M.K. Gutniak, J. Svartberg, P.M. Hellstrom, J.J. Holst, N. Adner, B. Ahren.
Antidiabetogenic action of glucagon-like peptide-1 related to administration relative to meal intake in subjects with type 2 diabetes.
J Intern Med, 250 (2001), pp. 81-87
[40.]
D.A. D’Alessio, S.E. Kahn, C.R. Leusner, J.V. Ensinck.
Glucagonlike peptide 1 enhances glucose tolerance both by stimulation of insulin release and by increasing insulin-independent glucose disposal.
J Clin Invest, 93 (1994), pp. 2263-2266
[41.]
D.A. D’Alessio, R.L. Prigeon, J.W. Ensinck.
Enteral enhancement of glucose disposition by both insulin-dependent and insulin-independent processes: a physiologic role of glucagonlike peptide 1.
Diabetes, 44 (1995), pp. 1433-1437
[42.]
I. Valverde, M. Morales, F. Clemente, M.I. López-Delgado, E. Delgado, A. Perea, et al.
Glucagon-like peptide 1: a potent glycogenic hormone.
FEBS Lett, 349 (1994), pp. 313-316
[43.]
M.L. Villanueva-Peñacarrillo, A.I. Alcántara, F. Clemente, E. Delgado, I. Valverde.
Potent glycogenic effect of GLP-1(7- 36)amide in rat skeletal muscle.
Diabetologia, 37 (1994), pp. 1163-1166
[44.]
M. Morales, M.I. López-Delgado, A. Alcántara, M.A. Luque, F. Clemente, L. Márquez, et al.
Preserved effects upon glycogen synthase a activity and glucose metabolism in isolated hepatocytes and skeletal muscle from diabetic rats.
Diabetes, 46 (1997), pp. 1264-1269
[45.]
M.A. Luque, N. González, L. Márquez, A. Acitores, A. Redondo, M. Morales, et al.
GLP-1 and glucose metabolism in human myocytes.
J Endocrinol, 173 (2002), pp. 465-473
[46.]
E. Delgado, M.A. Luque, A. Alcántara, M.A. Trapote, F. Clemente, C. Galera, et al.
Glucagon-like peptide-1 binding to rat skeletal muscle.
Peptides, 16 (1995), pp. 225-229
[47.]
M.L. Villanueva-Peñacarrillo, E. Delgado, M.A. Trapote, A. Alcántara, F. Clemente, M.A. Luque, et al.
Glucagon-like peptide-1 binding to rat hepatic membranes.
J Endocrinol, 146 (1995), pp. 183-189
[48.]
B. Thorens.
Expression cloning of the pancreatic β cell receptor for the gluco-incretin hormone glucagon-like peptide 1.
Proc Natl Acad Sci USA, 89 (1992), pp. 8641-8645
[49.]
P. Stralfors.
Insulin second messengers.
Bioessays, 19 (1997), pp. 327-335
[50.]
M.A. Trapote, F. Clemente, C. Galera, M. Morales, A. Alcántara, M.I. López-Delgado, et al.
Inositolphosphoglycans implicated in the GLP-1(7-36)amide action in the liver.
J Endocrinol Invest, 19 (1996), pp. 114-118
[51.]
C. Galera, F. Clemente, A. Alcántara, M.A. Trapote, A. Perea, M.I. López-Delgado, et al.
Inositolphosphoglycans and diacylglycerol are possible mediators in the glycogenic effect of GLP-1(7-36)amide in BC3H-1 miocytes.
Cell Biochem Funct, 14 (1996), pp. 43-48
[52.]
L. Márquez, M.A. Trapote, M.A. Luque, I. Valverde, M.L. Villanueva-Peñacarrillo.
Inositolphosphoglycans possibly mediate the effects of glucagon-like peptide-1(7-36)amide on rat liver and adipose tissue.
[53.]
L. Márquez, N. González, J. Puente, I. Valverde, M.L. Villanueva-Peñacarrillo.
GLP-1 effect in GPI/IPG system in adipocytes and hepatocytes from diabetic rats.
Diab Nutr Metab, 14 (2001), pp. 239-244
[54.]
C. Ruiz-Grande, C. Alarcón, E. Mérida, I. Valverde.
Lipolytic action of glucagon-like peptides in isolated rat adipocytes.
Peptides, 13 (1992), pp. 13-16
[55.]
A. Perea, C. Viñambres, F. Clemente, M.L. Villanueva-Peñacarrillo, I. Valverde.
GLP-1(7-36)amide effects on glucose transport and metabolism in rat adipose tissue.
Horm Metab Res, 9 (1997), pp. 417-421
[56.]
M.L. Villanueva-Peñacarrillo, L. Márquez, N. González, M. Díaz-Miguel, I. Valverde.
Effect of GLP-1 on lipid metabolism in human adipocytes.
Horm Metab Res, 33 (2001), pp. 73-77
[57.]
I. Valverde, E. Mérida, E. Delgado, M.A. Trapote, M.L. Villanueva-Peñacarrillo.
Presence and characterization of glucagonlike peptide-1(7-36)amide receptors in solubilized membranes of rat adipose tissue.
Endocrinology, 132 (1993), pp. 75-79
[58.]
E. Mérida, E. Delgado, L.M. Molina, M.L. Villanueva-Peñacarrillo, I. Valverde.
Presence of glucagon and glucagon-like peptide-1-(7-36)amide receptors in solubilized membranes of human adipose tissue.
J Clin Endocrinol Metab, 77 (1993), pp. 1654-1657
[59.]
M.L. Villanueva-Peñacarrillo, E. Mérida, E. Delgado, L.M. Molina, F. Arrieta, A. Rovira, et al.
Increased glucagon-like peptide 1 (7-36) amide binding in adipose tissue from non-insulin dependent and insulin-dependent diabetic patients.
Diab Nutr Metab, 7 (1994), pp. 143-148
[60.]
I. Valverde, E. Delgado, E. Mérida, D. Vicent, M.A. Trapote, A.I. Alcántara, et al.
GLP-1(7-36) amide binding in liver membranes from streptozotocin diabetic rats.
Diab Nutr Metab, 9 (1996), pp. 103-105
[61.]
M.L. Villanueva-Peñacarrillo, E. Delgado, D. Vicent, E. Mérida, A.I. Alcántara, I. Valverde.
GLP-1(7-36)amide binding in skeletal muscle membranes from streptozotocin diabetic rats.
Endocrine, 3 (1995), pp. 685-687
[62.]
M.L. Villanueva-Peñacarrillo, J. Puente, A. Redondo, F. Clemente, I. Valverde.
Effect of GLP-1 treatment on GLUT2 and GLUT4 expression in type 1 and type 2 rat diabetic models.
Endocrine, 15 (2001), pp. 241-248
[63.]
J. Oben, L. Morgan, J. Fletcher, V. Marks.
Effect of the enteropancreatic hormones, gastric inhibitory polypeptide and glucagon-like polypeptide-1(7-36) amide, on fatty acid synthesis in explants of rat adipose tissue.
J Endocrinol, 130 (1991), pp. 267-272
[64.]
J.M. Egan, C. Montrose-Rafizadeh, Y.H. Wang, M. Bernier, J. Roth.
Glucagon-like peptide-1(7-36) amide (GLP-1) enhances insulin-stimulated glucose metabolism in 3T3-L1 adipocytes: one of several potential extrapancreatic sites of GLP-1 action.
Endocrinology, 135 (1994), pp. 2070-2075
[65.]
H. Miki, M. Namba, T. Nishimura, I. Mineo, T. Matsumura, J. Miyagawa, et al.
Glucagon-like peptide-1(7-36)amide enhances insulin-stimulated glucose uptake and decreases intracellular cAMP content in isolated rat adipocytes.
Biochim Biophys Acta, 1312 (1996), pp. 132-136
[66.]
H. Yang, J.M. Egan, Y. Wang, C.D. Moyes, J. Roth, M.H. Montrose, et al.
GLP-1 action in L6 myotubes is via a receptor different from the pancreatic GLP-1 receptor.
Amer J Physiol, 275 (1998), pp. C675-C683
[67.]
F.P. O’Harte, A.M. Gray, Y.H. Abdel-Wahab, P.R. Flatt.
Effects of non-glycated and glycated glucagon-like peptide-1(7-36) amide on glucose metabolism in isolated mouse abdominal muscle.
Peptides, 18 (1997), pp. 1327-1333
[68.]
A. Redondo, V. Trigo, A. Acitores, I. Valverde, M.L. Villanueva-Peñacarrillo.
Cell signalling of the GLP-1 action in rat liver.
Mol Cell Endocrinol, 204 (2003), pp. 43-50
[69.]
A. Acitores, N. González, V. Sancho, I. Valverde, M.L. Villanueva-Peñacarrillo.
Cell signalling of the glucagon like peptide-1 action in rat skeletal muscle.
J Endocrinol, 180 (2004), pp. 389-398
[70.]
N. González, A. Acitores, V. Sancho, I. Valverde, M.L. Villanueva-Peñacarrillo.
Effect of GLP-1 on glucose transport and its cell signalling in human myocytes.
Regul Pept, 126 (2005), pp. 203-211
[71.]
V. Sancho, M.V. Trigo, N. González, I. Valverde, W.J. Malaisse, M.L. Villanueva-Peñacarrillo.
Effects of GLP-1 and exendins on kinases activity, glucose transport, and lipid metabolism in adipocytes from normal and type-2 diabetic rats.
J Mol Endocrinol, 35 (2005), pp. 27-38
[72.]
A. Acitores, N. González, V. Sancho, L. Arnés, I. Valverde, W.J. Malaisse, et al.
Participation of protein kinases in the stimulant action of GLP-1 upon 2-deoxy-D-glucose uptake by normal rat skeletal muscle.
Horm Metab Res, 37 (2005), pp. 275-280
[73.]
A. Shalev, R. Ninnis, U. Keller.
Effects of glucagon-like peptide 1 (7-36 amide) on glucose kinetics during somatostatin-induced suppression of insulin secretion in healthy men.
Horm Res, 49 (1998), pp. 221-225
[74.]
H. Sandhu, S.R. Wiesenthal, P.E. MacDonald, R.H. McCall, V. Tchipashvili, S. Rashid, et al.
Glucagon-like peptide 1 increases insulin sensitivity in depancreatized dogs.
Diabetes, 48 (1999), pp. 1045-1053
[75.]
A. Mizuno, M. Kuwajima, K. Ishida, Y. Noma, T. Murakami, K. Tateishi, et al.
Extrapancreatic action of truncated glucagon-like peptide-I in Otsuka Long-Evans Tokushima Fatty rats, an animal model for non-insulin-dependent diabetes mellitus.
Metabolism, 46 (1997), pp. 745-749
[76.]
M. Toft-Nielson, S. Madsbad, J.J. Holst.
The effect of glucagonlike peptide I (GLP-I) on glucose elimination in healthy subjects depends on the pancreatic glucoregulatory hormones.
Diabetes, 45 (1996), pp. 552-556
[77.]
L. Orskov, J.J. Holst, J. Moller, C. Orskov, N. Moller, K.G. Alberti, et al.
GLP-1 does not acutely affect insulin sensitivity in healthy man.
Diabetologia, 39 (1996), pp. 1227-1232
[78.]
H. Larsson, J.J. Holst, B. Ahren.
Glucagon-like peptide-1 reduces hepatic glucose production indirectly through insulin and glucagon in humans.
Acta Physiol Scand, 160 (1997), pp. 413-422
[79.]
A.S. Ryan, J.M. Egan, J.F. Habener, D. Elahi.
Insulinotropic hormone glucagon-like peptide-1-(7-37) appears not to augment insulin-mediated glucose uptake in young men during euglycemia.
J Clin Endocrinol Metab, 83 (1998), pp. 2399-2404
[80.]
B. Ahren, H. Larsson, J.J. Holst.
Effects of glucagon-like peptide-1 on islet function and insulin sensitivity in noninsulin-dependent diabetes mellitus.
J Clin Endocrinol Metab, 82 (1997), pp. 473-478
[81.]
A. Vella, P. Shah, R. Basu, A. Basu, J.J. Holst, R.A. Rizza.
Effect of glucagon-like peptide 1(7-36) amide on glucose effectiveness and insulin action in people with type 2 diabetes.
Diabetes, 49 (2000), pp. 611-617
[82.]
E.J. Freyse, S. Knospe, T. Becher, O. El Hag, B. Goke, U. Fischer.
Glucagon-like peptide-1 has no insulin-like effects in insulindependent diabetic dogs maintained normoglycemic and normoinsulinemic.
Metabolism, 48 (1999), pp. 134-137
[83.]
A. Vella, P. Shah, R. Basu, A. Basu, M. Camilleri, F.W. Schwenk, et al.
Effect of glucagon-like peptide-1(7-36)-amide on initial splanchnic glucose uptake and insulin action in humans with type 1 diabetes.
Diabetes, 50 (2001), pp. 565-572
[84.]
J.M. Egan, G.S. Meneilly, J.F. Habener, D. Elahi.
Glucagon-like peptide-1 augments insulin-mediated glucose uptake in the obese state.
J Clin Endocrinol Metab, 87 (2002), pp. 3768-3773
[85.]
D. Dardevet, M.C. Moore, D. Neal, C.A. DiCostanzo, W. Snead, A.D. Cherrington.
Insulin-independent effects of GLP-1 on canine liver glucose metabolism: duration of infusion and involvement of hepatoportal region.
Am J Physiol Endocrinol Metab, 287 (2004), pp. E75-E81
[86.]
M.D. Turton, D. O'Shea, I. Gunn, S.A. Beak, C.M.B. Edwards, K. Meeran, et al.
A role for glucagon-like peptide-1 in the central regulation of feeding.
Nature, 379 (1996), pp. 69-72
[87.]
M. Navarro, F. Rodríguez de Fonseca, E. Álvarez, J.A. Chowen, J.A. Zueco, R. Gómez, et al.
Colocalization of glucagon-like peptide-1 (GLP-1) receptors, glucose transporter GLUT-2, and glucokinase mRNAs in rat hypotalamic cells: evidence for a role of GLP-1 receptor agonists as an inhibitory signal for food and water intake.
J Neurochem, 67 (1996), pp. 1982-1991
[88.]
A. Flint, A. Raben, A. Astrup, J.J. Holst.
Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans.
J Clin Invest, 101 (1998), pp. 515-520
[89.]
E. Naslund, N. King, S. Mansten, N. Adner, J.J. Holst, M. Gutniak, et al.
Prandial subcutaneous injections of glucagon-like peptide-1 cause weight loss in obese human subjects.
Br J Nutr, 91 (2004), pp. 439-446
[90.]
I. Valverde, J. Puente, A. Martín-Duce, L. Molina, O. Lozano, V. Sancho, et al.
Changes in glucagon-like peptide-1 (GLP-1) secretion after biliopancreatic diversion or vertical banded gastroplasty in obese subjects.
Obes Surg, 15 (2005), pp. 387-397
[91.]
N.H. Greig, M.P. Mattson, T. Perry, S.L. Chan, T. Giordano, K. Sambamurti, et al.
New therapeutic strategies and drug candidates for neurodegenerative diseases: p53 and TNF-{alpha} inhibitors, and GLP-1 receptor agonists.
Ann N Y Acad Sci, 1035 (2004), pp. 290-315
[92.]
T.A. Perry, N.H. Greig.
A new Alzheimer's disease interventive strategy: GLP-1.
Curr Drug Targets, 5 (2004), pp. 565-571
[93.]
J. Cancelas, M.L. Villanueva-Peñacarrillo, I. Valverde, W.J. Malaisse.
Synergistic insulinotropic effects of succinic acid dimethyl ester and exendin-4 in anaesthetized rats.
Int J Mol Med, 8 (2001), pp. 269-271
[94.]
A.I. Alcántara, M. Morales, E. Delgado, M.I. López-Delgado, F. Clemente, M.A. Luque, et al.
Exendin-4 agonist and exendin(9-39)amide antagonist of the GLP-1(7-36)amide effects in liver and muscle.
Arch Biochem Biophys, 341 (1997), pp. 1-7
[95.]
L.A. Nikolaidis, S. Mankad, G.G. Sokos, G. Miske, A. Shah, D. Elahi, et al.
Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion.
Circulation, 109 (2004), pp. 962-965
[96.]
T.-M. Zhang, L. Ladrière, J.A. García-Martínez, M.L. Villanueva-Peñacarrillo, I. Valverde, W.J. Malaisse.
Effect of succinic acid dimethyl ester on GLP-1 secretion and insulinotropic action of glucagon-like peptide 1.
Med Sci Res, 24 (1996), pp. 349-350
[97.]
W.J. Malaisse.
Alteration of pancreatic B-cell D-glucose metabolism in type 2 diabetes: the G quintet.
Endocrinologia, 40 (1993), pp. 309-313
[98.]
J.A. García-Martínez, J. Cancelas, M.L. Villanueva-Peñacarrillo, I. Valverde, W.J. Malaisse.
Potentiation of the insulinotropic action of GLP-1 by succinic acid dimethyl ester in fed anaesthetised rats.
Horm Metab Res, 32 (2000), pp. 306-309
[99.]
J.A. García-Martínez, J. Cancelas, M.L. Villanueva-Peñacarrillo, I. Valverde, W.J. Malaisse.
Prolongation of the insulinotropic action of glucagon-like peptide 1 by the dimethyl ester of succinic acid in an animal model of type-2 diabetes.
Int J Mol Med, 6 (2000), pp. 319-321
[100.]
I. Valverde, J. Cancelas, M.L. Villanueva-Peñacarrillo, W.J. Malaisse.
Potentiation by methyl pyruvate of GLP-1 insulinotropic action in normal rats.
Int J Mol Med, 7 (2001), pp. 621-623
[101.]
J. Cancelas, M.L. Villanueva-Peñacarrillo, I. Valverde, W.J. Malaisse.
Potentiation by glutamic acid dimethyl ester of GLP-1 insulinotropic action in fed anaesthetized rats.
Int J Mol Med, 8 (2001), pp. 531-532
[102.]
J. Cancelas, M.L. Villanueva-Peñacarrillo, I. Valverde, W.J. Malaisse.
Potentiation and or prolongation of glucagon-like peptide 1 insulinotropic action by either methyl pyruvate or the dimethyl ester of L-glutamic acid in an animal model of type-2 diabetes.
Endocrine, 16 (2001), pp. 113-116
[103.]
J. Cancelas, J.A. García-Martínez, M.L. Villanueva-Peñacarrillo, I. Valverde, W.J. Malaisse.
Synergistic insulinotropic action of D-glucose pentaacetate and GLP-1 in rats.
Med Sci Res, 27 (1999), pp. 853-856
[104.]
J.A. García-Martínez, L. Ladrière, M.L. Villanueva-Peñacarrillo, I. Valverde, W.J. Malaisse.
Insulinotropic action of α-D-glucose pentaacetate in vivo.
Diab Nutr Metab, 10 (1997), pp. 198-202
[105.]
C.F. Deacon.
Therapeutic strategies based on glucagon-like peptide 1.
Diabetes, 53 (2004), pp. 2181-2189
[106.]
R. Mentlein.
Dipeptidyl-peptidase IV (CD26)-Role in the inactivation of regulatory peptides.
Regul Pept, 85 (1999), pp. 9-24
[107.]
K. Hupe-Sodmann, G.P. McGregor, R. Bridenbaugh, R. Goke, B. Goke, H. Thole, et al.
Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-1(7-36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides.
Regul Pept, 58 (1995), pp. 149-156
[108.]
L.L. Nielsen, A.A. Young, D.G. Parkes.
Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved glycemic control of type 2 diabetes.
Regul Pept, 117 (2004), pp. 77-88
[109.]
G.G. Holz, O.G. Chepurny.
Glucagon-like peptide-1 synthetic analogs: new therapeutic agents for use in the treatment of diabetes mellitus.
Curr Med Chem, 10 (2003), pp. 2471-2483
[110.]
K.B. Degn, C.B. Juhl, J. Sturis, G. Jakobsen, B. Brock, V. Chandramouli, et al.
One week's treatment with the long-acting glucagon-like peptide 1 derivative liraglutide (NN2211) markedly improves 24-h glycemia and alpha- and beta-cell function and reduces endogenous glucose release in patients with type 2 diabetes.
Diabetes, 53 (2004), pp. 1187-1194
Copyright © 2006. Sociedad Española de Endocrinología y Nutrición
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos