covid
Buscar en
Endocrinología y Nutrición (English Edition)
Toda la web
Inicio Endocrinología y Nutrición (English Edition) Thyroide hormone resistance syndromes
Información de la revista
Vol. 58. Núm. 4.
Páginas 185-196 (abril 2011)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 58. Núm. 4.
Páginas 185-196 (abril 2011)
Review
Acceso a texto completo
Thyroide hormone resistance syndromes
Síndromes de resistencia a las hormonas tiroideas
Visitas
2337
Juan Bernal
Instituto de Investigaciones Biomédicas, CSIC-UAM y CIBER de enfermedades raras, Madrid, Spain
Este artículo ha recibido
Información del artículo
Abstract

Thyroid hormone resistance syndromes are a group of genetic conditions characterized by decreased tissue sensitivity to thyroid hormones. Three syndromes are currently recognized, in which resistance to hormone action is due respectively to mutations in the gene encoding for thyroid hormone receptor TRb, impaired T4 and T3 transport, and impaired deiodinase-mediated T4 to T3 conversion. An updated review of each of these forms of resistance is provided, and their pathogenetic mechanisms and clinical approaches are discussed.

Keywords:
Hypothyroidism
Membrane transporters
Deiodinases
Intellectual deficit
Nuclear receptors
MCT8
Resumen

La resistencia a hormonas tiroideas es un grupo de síndromes de causa genética caracterizados por la disminución de la sensibilidad tisular a estas hormonas. En la actualidad se distinguen tres formas, en los que la resistencia a la acción hormonal se debe, respectivamente, a mutaciones del gen que codifica el receptor nuclear de T3 TRb, a alteraciones en el transporte celular de T4 y T3, y a defectos en la conversión de T4 en T3 mediada por desyodasas. En esta revisión se hace una exposición resumida y actualizada de cada una de estas tres formas de resistencia y se discuten los mecanismos patogénicos y aproximaciones clínicas.

Palabras clave:
Hipotiroidismo
Transportadores de membrana
Desyodasas
Déficit intelectual
Receptores nucleares
MCT8
El Texto completo está disponible en PDF
References
[1.]
S. Refetoff, L.T. DeWind, L.J. DeGroot.
Familial syndrome combining deaf-mutism, stippled epiphyses, goiter and abnormally high PBI: possible target organ refractoriness to thyroid hormone.
J Clin Endocrinol Metab, 27 (1967), pp. 279-294
[2.]
S. Refetoff.
Resistance to thyroid hormone: an historical overview.
Thyroid, 4 (1994), pp. 345-349
[3.]
R.E. Weiss, A. Dumitrescu, S. Refetoff.
Approach to the patient with resistance to thyroid hormone and pregnancy.
J Clin Endocrinol Metab, 95 (2010), pp. 3094-3102
[4.]
S.Y. Cheng, J.L. Leonard, P.J. Davis.
Molecular aspects of thyroid hormone actions.
Endocr Rev, 31 (2010), pp. 139-170
[5.]
R.J. Koenig.
Thyroid hormone receptor coactivators and corepressors.
Thyroid, 8 (1998), pp. 703-713
[6.]
D. Wang, X. Xia, R.E. Weiss, S. Refetoff, P.M. Yen.
Distinct and histone-specific modifications mediate positive versus negative transcriptional regulation of TSHalpha promoter.
[7.]
S. Ercan-Fang, H.L. Schwartz, C.N. Mariash, J.H. Oppenheimer.
Quantitative assessment of pituitary resistance to thyroid hormone from plots of the logarithm of thyrotropin versus serum free thyroxine index.
J Clin Endocrinol Metab, 85 (2000), pp. 2299-2303
[8.]
S. Refetoff, A.M. Dumitrescu.
Syndromes of reduced sensitivity to thyroid hormone: genetic defects in hormone receptors, cell transporters and deiodination.
Best Pract Res Clin Endocrinol Metab, 21 (2007), pp. 277-305
[9.]
K. Takeda, A. Sakurai, L.J. DeGroot, S. Refetoff.
Recessive inheritance of thyroid hormone resistance caused by complete deletion of the protein-coding region of the thyroid hormone receptor-beta gene.
J Clin Endocrinol Metab, 74 (1992), pp. 49-55
[10.]
M.C. Gershengorn, B.D. Weintraub.
Thyrotropin-induced hyperthyroidism caused by selective pituitary resistance to thyroid hormone. A new syndrome of “inappropriate secretion of TSH”.
J Clin Invest, 56 (1975), pp. 633-642
[11.]
F. Brucker-Davis, M.C. Skarulis, M.B. Grace, J. Benichou, P. Hauser, E. Wiggs, et al.
Genetic and clinical features of 42 kindreds with resistance to thyroid hormone. The National Institutes of Health Prospective Study.
Ann Intern Med, 123 (1995), pp. 572-583
[12.]
R.E. Weiss, C. Marcocci, G. Bruno-Bossio, S. Refetoff.
Multiple genetic factors in the heterogeneity of thyroid hormone resistance.
J Clin Endocrinol and Metab, 76 (1993), pp. 257-259
[13.]
R.E. Weiss, M. Weinberg, S. Refetoff.
Identical mutations in unrelated families with generalized resistance to thyroid hormone occur in cytosine-guanine-rich areas of the thryroid hormone receptor beta gene.
J Clin Invest, 91 (1993), pp. 2408-2415
[14.]
P. Beck-Peccoz, V.K. Chatterjee.
The variable clinical phenotype in thyroid hormone resistance syndrome.
Thyroid, 4 (1994), pp. 225-232
[15.]
D.S. Machado, A. Sabet, L.A. Santiago, A.R. Sidhaye, M.I. Chiamolera, T.M. Ortiga-Carvalho, et al.
A thyroid hormone receptor mutation that dissociates thyroid hormone regulation of gene expression in vivo.
Proc Natl Acad Sci U S A, 106 (2009), pp. 9441-9446
[16.]
P. Webb.
Another story of mice and men: the types of RTH.
Proc Natl Acad Sci U S A, 106 (2009), pp. 9129-9130
[17.]
H. Yagi, J. Pohlenz, Y. Hayashi, A. Sakurai, S. Refetoff.
Resistance to thyroid hormone caused by two mutant thyroid hormone receptors beta, R243Q and R243W, with marked impairment of function that cannot be explained by altered in vitro 3,5,3’-triiodothyroinine binding affinity.
J Clin Endocrinol Metab, 82 (1997), pp. 1608-1614
[18.]
B. Morte, J. Manzano, T. Scanlan, B. Vennstrom, J. Bernal.
Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism.
Proc Natl Acad Sci U S A, 99 (2002), pp. 3985-3989
[19.]
D. Forrest, E. Hanebuth, R.J. Smeyne, N. Everds, C.L. Stewart, J.M. Wehner, et al.
Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function.
Embo J, 15 (1996), pp. 3006-3015
[20.]
S. Ono, I.D. Schwartz, O.T. Mueller, A.W. Root, S.J. Usala, B.B. Bercu.
Homozygosity for a dominant negative thyroid hormone receptor gene responsible for generalized resistance to thyroid hormone.
J Clin Endocrinol Metab, 73 (1991), pp. 990-994
[21.]
S.J. Usala, J.B. Menke, T.L. Watson, F.E. Wondisford, B.D. Weintraub, J. Berard, et al.
A homozygous deletion in the c-erbA beta thyroid hormone receptor gene in a patient with generalized thyroid hormone resistance: isolation and characterization of the mutant receptor.
Mol Endocrinol, 5 (1991), pp. 327-335
[22.]
A. Baniahmad, S.Y. Tsai, B.W. O’Malley, M.J. Tsai.
Kindred S thyroid hormone receptor is an active and constitutive silencer and a repressor for thyroid hormone and retinoic acid responses.
Proc Natl Acad Sci U S A, 89 (1992), pp. 10633-10637
[23.]
T. Nagaya, L.D. Madison, J.L. Jameson.
Thyroid hormone receptor mutants that cause resistance to thyroid hormone. Evidence for receptor competition for DNA sequences in target genes.
J Biol Chem, 267 (1992), pp. 13014-13019
[24.]
S.M. Yoh, V.K. Chatterjee, M.L. Privalsky.
Thyroid hormone resistance syndrome manifests as an aberrant interaction between mutant T3 receptors and transcriptional corepressors.
Mol Endocrinol, 11 (1997), pp. 470-480
[25.]
Y. Liu, A. Takeshita, S. Misiti, W.W. Chin, P.M. Yen.
Lack of coactivator interaction can be a mechanism for dominant negative activity by mutant thyroid hormone receptors.
Endocrinology, 139 (1998), pp. 4197-4204
[26.]
S.Y. Wu, R.N. Cohen, E. Simsek, D.A. Senses, N.E. Yar, H. Grasberger, et al.
A novel thyroid hormone receptor-beta mutation that fails to bind nuclear receptor corepressor in a patient as an apparent cause of severe, predominantly pituitary resistance to thyroid hormone.
J Clin Endocrinol Metab, 91 (2006), pp. 1887-1895
[27.]
R.E. Weiss, Y. Hayashi, T. Nagaya, K.J. Petty, Y. Murata, H. Tunca, et al.
Dominant inheritance of resistance to thyroid hormone not linked to defects in the thyroid hormone receptor a and b genes may be due to a defective cofactor.
J Clin Endocrinol Metab, 81 (1996), pp. 4196-4203
[28.]
R.E. Weiss, J. Xu, G. Ning, J. Pohlenz, B.W. O’Malley, S. Refetoff.
Mice deficient in the steroid receptor co-activator 1 (SRC-1) are resistant to thyroid hormone.
Embo J, 18 (1999), pp. 1900-1904
[29.]
S. Reutrakul, P.M. Sadow, S. Pannain, J. Pohlenz, G.A. Carvalho, P.E. Macchia, et al.
Search for abnormalities of nuclear corepressors, coactivators and coregulators in families with resistance to thyroid hormone without mutations in thyroid hormone receptor beta or alpha genes.
J Clin Endocrinol Metab, 85 (2000), pp. 3609-3617
[30.]
S. Mamanasiri, S. Yesil, A.M. Dumitrescu, X.H. Liao, T. Demir, R. Weiss, et al.
Mosaicism of a thyroid hormone (TR) beta gene mutation in resistance to thyroid hormone.
J Clin Endocrinol Metab, 91 (2006), pp. 3471-3477
[31.]
T. Tajima, W. Jo, K. Fujikura, M. Fukushi, K. Fujieda.
Elevated free thyroxine levels detected by a neonatal screening system.
Pediatr Res, 66 (2009), pp. 312-316
[32.]
S. Refetoff, R.E. Weiss, S.J. Usala.
The syndromes of resistance to thyroid hormones.
Endocr Rev, 14 (1993), pp. 348-399
[33.]
R.E. Weiss, S. Refetoff.
Resistance to thyroid hormone.
Rev Endocr Metab Disord, 1 (2000), pp. 97-108
[34.]
M. Pulcrano, E.A. Palmieri, D. Mannavola, M. Ciulla, I. Campi, D. Covelli, et al.
Impact of resistance to thyroid hormone on the cardiovascular system in adults.
J Clin Endocrinol Metab, 94 (2009), pp. 2812-2816
[35.]
R.E. Weiss, M.A. Stein, S.C. Duck, B. Chyna, W. Phillips, T. Obrien, et al.
Low intelligence but not attention deficit hyperactivity disorder is associated with resistance to thyroid hormone caused by mutation r316h in the thyroid hormone receptor beta gene.
J Clin Endocrinol Metab, 78 (1994), pp. 1525-1528
[36.]
T. Sivakumar, S. Chaidarun.
Resistance to thyroid hormone in a patient with coexisting Grave’ disease.
Thyroid, 20 (2010), pp. 213-216
[37.]
L. Valdivielso, D. Bellido, F. Pulido, F. Hawkins, J. Bernal.
Hipertiroxinemia Disalbuminémica Familiar.
Endocrinologia, 35 (1988), pp. 19-21
[38.]
S. Refetoff, V.S. Marinov, H. Tunca, M.M. Byrne, T. Sunthornthepvarakul, R.E. Weiss.
A new family with hyperthyroxinemia caused by transthyretin Val109 misdiagnosed as thyrotoxicosis and resistance to thyroid hormone--a clinical research center study.
J Clin Endocrinol Metab, 81 (1996), pp. 3335-3340
[39.]
J. Anselmo, S. Refetoff.
Regression of a large goiter in a patient with resistance to thyroid hormone by every other day treatment with triiodothyronine.
[40.]
P. Beck-Peccoz, D. Mannavola, L. Persani.
Syndromes of thyroid hormone resistance.
Ann Endocrinol (Paris), 66 (2005), pp. 264-269
[41.]
T. Guran, S. Turan, R. Bircan, A. Bereket.
9years follow-up of a patient with pituitary form of resistance to thyroid hormones (PRTH): comparison of two treatment periods of D-thyroxine and triiodothyroacetic acid (TRIAC).
J Pediatr Endocrinol Metab, 22 (2009), pp. 971-978
[42.]
J. Anselmo, D. Cao, T. Karrison, R.E. Weiss, S. Refetoff.
Fetal loss associated with excess thyroid hormone exposure.
JAMA, 292 (2004), pp. 691-695
[43.]
S. Dhingra, P.J. Owen, J.H. Lazarus, P. Amin.
Resistance to thyroid hormone in pregnancy.
Obstet Gynecol, 112 (2008), pp. 501-503
[44.]
A.M. Dumitrescu, X.H. Liao, T.B. Best, K. Brockmann, S. Refetoff.
A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene.
Am J Hum Genet, 74 (2004), pp. 168-175
[45.]
E.C. Friesema, A. Grueters, H. Biebermann, H. Krude, A. von Moers, M. Reeser, et al.
Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation.
Lancet, 364 (2004), pp. 1435-1437
[46.]
W.E. Visser, E.C. Friesema, T.J. Visser, Minireview:.
Thyroid Hormone Transporters: The Knowns and the Unknowns.
Mol Endocrinol, 25 (2011), pp. 1-14
[47.]
C.E. Schwartz, M.M. May, N.J. Carpenter, R.C. Rogers, J. Martin, M.G. Bialer, et al.
Allan-Herndon-Dudley syndrome and the monocarboxylate transporter 8 (MCT8) gene.
Am J Hum Genet, 77 (2005), pp. 41-53
[48.]
W. Allan, C.N. Herndon, F.C. Dudley.
Some examples of the inheritance of mental deficiency: apparently sex-linked iodicy and microcephaly.
Am J Ment Defic, 48 (1944), pp. 325-334
[49.]
C. Vaurs-Barriere, M. Deville, C. Sarret, G. Giraud, V. Des Portes, J.M. Prats-Vinas, et al.
Pelizaeus-Merzbacher-Like disease presentation of MCT8 mutated male subjects.
Ann Neurol, 65 (2009), pp. 114-118
[50.]
H. Biebermann, P. Ambrugger, P. Tarnow, A. Von Moers, U. Schweizer, A. Grueters.
Extended clinical phenotype, endocrine investigations and functional studies of a loss-of-function mutation A150V in the thyroid hormone specific transporter MCT8.
Eur J Endocrinol, 153 (2005), pp. 359-366
[51.]
C.E. Schwartz, R.E. Stevenson.
The MCT8 thyroid hormone transporter and Allan-Herndon-Dudley syndrome.
Best Pract Res Clin Endocrinol Metab, 21 (2007), pp. 307-321
[52.]
N. Namba, Y. Etani, T. Kitaoka, Y. Nakamoto, M. Nakacho, K. Bessho, et al.
Clinical phenotype and endocrinological investigations in a patient with a mutation in the MCT8 thyroid hormone transporter.
Eur J Pediatr, 167 (2008), pp. 785-791
[53.]
A. Papadimitriou, A.M. Dumitrescu, A. Papavasiliou, A. Fretzayas, P. Nicolaidou, S. Refetoff.
A novel monocarboxylate transporter 8 gene mutation as a cause of severe neonatal hypotonia and developmental delay.
Pediatrics, 121 (2008), pp. e199-e202
[54.]
O. Fuchs, N. Pfarr, J. Pohlenz, H. Schmidt.
Elevated serum triiodothyronine and intellectual and motor disability with paroxysmal dyskinesia caused by a monocarboxylate transporter 8 gene mutation.
Dev Med Child Neurol, 51 (2009), pp. 240-244
[55.]
L. Boccone, S. Mariotti, V. Dessi, D. Pruna, A. Meloni, G. Loudianos.
Allan-Herndon-Dudley syndrome (AHDS) caused by a novel SLC16A2 gene mutation showing severe neurologic features and unexpectedly low TRH-stimulated serum TSH.
Eur J Med Genet, 53 (2010), pp. 392-395
[56.]
K.R. Holden, O.F. Zuniga, M.M. May, H. Su, M.R. Molinero, R.C. Rogers, et al.
X-linked MCT8 gene mutations: characterization of the pediatric neurologic phenotype.
J Child Neurol, 20 (2005), pp. 852-857
[57.]
S.G. Frints, S. Lenzner, M. Bauters, L.R. Jensen, H. Van Esch, V. des Portes, et al.
MCT8 mutation analysis and identification of the first female with Allan-Herndon-Dudley syndrome due to loss of MCT8 expression.
Eur J Hum Genet, 16 (2008), pp. 1029-1037
[58.]
K. Brockmann, A.M. Dumitrescu, T.T. Best, F. Hanefeld, S. Refetoff.
X-linked paroxysmal dyskinesia and severe global retardation caused by defective MCT8 gene.
J Neurol, 252 (2005), pp. 663-666
[59.]
A.M. Dumitrescu, X.-H. Liao, R.E. Weiss, K. Millen, S. Refetoff.
Tissue specific thyroid hormone deprivation and excess in Mct8 deficient mice.
Endocrinology, 147 (2006), pp. 4036-4043
[60.]
M. Trajkovic, T.J. Visser, J. Mittag, S. Horn, J. Lukas, V.M. Darras, et al.
Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8.
J Clin Invest, 117 (2007), pp. 627-635
[61.]
A. Ceballos, M.M. Belinchon, E. Sanchez-Mendoza, C. Grijota-Martinez, A.M. Dumitrescu, S. Refetoff, et al.
Importance of monocarboxylate transporter 8 for the blood-brain barrierdependent availability of 3,5,3’-triiodo-L-thyronine.
Endocrinology, 150 (2009), pp. 2491-2496
[62.]
L.M. Roberts, K. Woodford, M. Zhou, D.S. Black, J.E. Haggerty, E.H. Tate, et al.
Expression of the thyroid hormone transporters monocarboxylate transporter-8 (SLC16A2) and organic ion transporter-14 (SLCO1C1) at the blood-brain barrier.
Endocrinology, 149 (2008), pp. 6251-6261
[63.]
C. Di Cosmo, X.H. Liao, A.M. Dumitrescu, N.J. Philp, R.E. Weiss, S. Refetoff.
Mice deficient in MCT8 reveal a mechanism regulating thyroid hormone secretion.
J Clin Invest, 120 (2010), pp. 3377-3388
[64.]
M. Trajkovic-Arsic, J. Muller, V.M. Darras, C. Groba, S. Lee, D. Weih, et al.
Impact of monocarboxylate transporter-8 deficiency on the hypothalamus-pituitary-thyroid axis in mice.
Endocrinology, 151 (2010), pp. 5053-5062
[65.]
B. Morte, A. Ceballos, D. Diez, C. Grijota-Martinez, A.M. Dumitrescu, C. Di Cosmo, et al.
Thyroid hormone-regulated mouse cerebral cortex genes are differentially dependent on the source of the hormone: a study in monocarboxylate transporter-8- and deiodinase-2-deficient mice.
Endocrinology, 151 (2010), pp. 2381-2387
[66.]
P.E. Sijens, L.A. Rodiger, L.C. Meiners, R.J. Lunsing.
1H magnetic resonance spectroscopy in monocarboxylate transporter 8 gene deficiency.
J Clin Endocrinol Metab, 93 (2008), pp. 1854-1859
[67.]
M. Grijota-Martínez, D. Díez, G. Morreale de Escobar, J. Bernal, B. Morte.
Lack of action of exogenously administered T3 on the fetal rat brain despite expression of the monocarboxylate transporter 8.
[68.]
E.K. Wirth, S. Roth, C. Blechschmidt, S.M. Holter, L. Becker, I. Racz, et al.
Neuronal 3’,3,5-triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan-Herndon-Dudley syndrome.
J Neurosci., 29 (2009), pp. 9439-9449
[69.]
I. Katsuaki, Y. Uchida, S. Ohtsuki, S. Aizawa, H. Kawakami, Y. Katsukura, et al.
Quantitative membrane protein expression at the blood-brain barrier of adult and younger cynomolgus monkeys.
J Pharmac Sci, (2011),
[70.]
J.L. Wemeau, M. Pigeyre, E. Proust-Lemoine, M. d’Herbomez, F. Gottrand, J. Jansen, et al.
Beneficial effects of propylthiouracil plus L-thyroxine treatment in a patient with a mutation in MCT8.
J Clin Endocrinol Metab, 93 (2008), pp. 2084-2088
[71.]
E. Morkin, G.D. Pennock, P.H. Spooner, J.J. Bahl, S. Goldman.
Clinical and experimental studies on the use of 3,5-diiodothyropropionic acid, a thyroid hormone analogue, in heart failure.
Thyroid, 12 (2002), pp. 527-533
[72.]
S. Goldman, M. McCarren, E. Morkin, P. Ladenson, R. Edson, S. Warren, et al.
DITPA, a thyroid hormone analog to treat heart failure: phase II trial VA cooperative study.
J Cardiac Failure, 14 (2008), pp. 796
[73.]
C. Di Cosmo, X.H. Liao, A.M. Dumitrescu, R.E. Weiss, S. Refetoff.
A thyroid hormone analog with reduced dependence on the monocarboxylate transporter 8 for tissue transport.
Endocrinology, 150 (2009), pp. 4450-4458
[74.]
S. Hameed, C. Di Cosmo, X.H. Liao, R.E. Weiss, C.F. Verge, S. Refetoff.
3,5-Diiodothyropropionic acid (DITPA) in the treatment of patients with MCT8 deficiency: a preliminary study.
Lawson Wilkins Pediatric Endocrine Society/European Society for Pediatric Endocrinology, (2009),
[75.]
A.M. Dumitrescu, X.H. Liao, M.S. Abdullah, J. Lado-Abeal, F.A. Majed, L.C. Moeller, et al.
Mutations in SECISBP2 result in abnormal thyroid hormone metabolism.
Nat Genet, 37 (2005), pp. 1247-1252
[76.]
B. Gereben, A.M. Zavacki, S. Ribich, B.W. Kim, S.A. Huang, W.S. Simonides, et al.
Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling.
Endocr Rev, 29 (2008), pp. 898-938
Copyright © 2011. Sociedad Española de Endocrinología y Nutrición
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos