metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Betalactamasas de espectro extendido en enterobacterias distintas de Escherichia...
Información de la revista
Vol. 28. Núm. S1.
Programa Externo de Control de Calidad SEIMC. Año 2008
Páginas 12-18 (enero 2009)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 28. Núm. S1.
Programa Externo de Control de Calidad SEIMC. Año 2008
Páginas 12-18 (enero 2009)
Acceso a texto completo
Betalactamasas de espectro extendido en enterobacterias distintas de Escherichia coli y Klebsiella
Extended-spectrum beta-lactamases in enterobacteria other than Escherichia coli and Klebsiella
Visitas
12299
Cristina Seral García, María Pardos de la Gándara, Francisco Javier Castillo García
Autor para correspondencia
fcastillo@salud.aragon.es

Autor para correspondencia.
Servicio de Microbiología, Hospital Clínico Universitario Lozano Blesa, Zaragoza. Departamento de Microbiología, Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, España
Este artículo ha recibido
Información del artículo
Resumen

Los métodos de detección de enterobacterias productoras de betalactamasas de espectro extendido (BLEE) comienzan por una adecuada interpretación de los perfiles de sensibilidad aplicando los criterios habituales de lectura interpretada del antibiograma. Posteriormente, se elegirán métodos de confirmación apropiados, basados en la inhibición de la enzima por inhibidores de betalactamasas, generalmente el ácido clavulánico. Deben utilizarse, al menos, dos sustratos –cefotaxima o ceftriaxona y ceftazidima– para detectar enzimas con baja actividad hidrolítica para alguno de los sustratos en las enterobacterias que no poseen AmpC, y añadir cefepima, o utilizar inhibidores de AmpC, en aquellos microorganismos que posean esta enzima. La identificación de las enzimas responsables del fenotipo BLEE confirmado puede realizarse, en el mismo laboratorio o en centros de referencia, siguiendo un protocolo de pruebas bioquímicas y moleculares que al menos permita descartar los genes relacionados con más frecuencia con los perfiles fenotípicos predominantes en nuestra región. Es importante conocer las combinaciones enzimas-microorganismos frecuentes en nuestra área geográfica, los vehículos de transmisión genética involucrados en su diseminación y las principales características epidemiológicas de las infecciones que producen para establecer la dimensión del problema y analizar su evolución, a fin de intentar instaurar medidas que contribuyan a limitar su diseminación.

Palabras clave:
Betalactamasas de espectro extendido
Métodos fenotípicos de cribado y confirmación
Métodos moleculares de caracterización
Abstract

Methods for detecting ESBL-producing Enterobacteriaceae begin by a correct interpretation of the susceptibility profiles, applying the usual criteria for interpretative reading of the antibiogram. Appropriate confirmatory methods will be consequently chosen, based on the inhibition of the enzyme by betalactamases inhibitors, generally clavulanic acid. In case of non-AmpC-producing Enterobacteriaceae, at least two substrates should be used –cefotaxime or ceftriaxone and ceftazidime– to detect enzymes with a low hydrolytic activity against both substrates. Cefepime or AmpC-inhibitors should be recommended for AmpC-producing microorganisms. The identification of the enzymes responsible for the confirmed ESBL phenotype can be performed, either in the clinical laboratory or in reference centres, following a protocol of biochemical and molecular reactions able to detect and characterize, at least, those genes more frequently related to the predominant phenotypic profiles in our region. It is important to know which are the most prevalent combinations enzyme-microorganism, the vehicles for the genetic transmission involved in their dissemination, and the main epidemiological characteristics of the infections that they produce, in order to establish the dimensions of the problem and conduct surveillance studies, with the aim of achieving measures to control the wide spread.

Keywords:
Extended spectrum beta-lactamases
Screening and confirmatory phenotypic methods
Molecular methods of detection
El Texto completo está disponible en PDF
Bibliografía
[1.]
C. Kliebe, B.A. Nies, J.F. Meyer, R.M. Tolxdorff-Neutzling, B. Wiedemann.
Evolution of plasmid-coded resistance to broad-spectrum cephalosporins.
Antimicrob Agents Chemother, 28 (1985), pp. 302-307
[2.]
H. Knothe.
In-vitro activity of cefotaxime.
Wien Klin Wochenschr Suppl, 142 (1983), pp. 4-7
[3.]
J. Sirot, C. Chanal, A. Petit, D. Sirot, R. Labia, G. Gerbaud.
Klebsiella pneumoniae and other Enterobacteriaceae producing novel plasmid-mediated beta-lactamases markedly active against third-generation cephalosporins: epidemiologic studies.
Rev Infect Dis, 10 (1988), pp. 850-859
[4.]
H. Bernard, C. Tancrede, V. Livrelli, A. Morand, M. Barthelemy, R. Labia.
A novel plasmid-mediated extended-spectrum beta-lactamase not derived from TEM- or SHV-type enzymes.
J Antimicrob Chemother, 29 (1992), pp. 590-592
[5.]
R. Bonnet.
Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes.
Antimicrob Agents Chemother, 48 (2004), pp. 1-14
[6.]
E. Machado, J. Ferreira, A. Novais, L. Peixe, R. Canton, F. Baquero, et al.
Preservation of integron types among Enterobacteriaceae producing extended-spectrum beta-lactamases in a Spanish hospital over a 15-year period (1988 to 2003).
Antimicrob Agents Chemother, 51 (2007), pp. 2201-2204
[7.]
T. Naas, P. Nordmann.
OXA-type beta-lactamases.
Curr Pharm Des, 5 (1999), pp. 865-879
[8.]
R. Canton, A. Novais, A. Valverde, E. Machado, L. Peixe, F. Baquero, et al.
Prevalence and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae in Europe.
Clin Microbiol Infect, 14 (2008), pp. S144-S153
[9.]
Jacoby GA, Bush K. Amino acid sequences for TEM, SHV and OXA extended-spectrum and inhibitor resistant beta-lactamases. 2009; Ed.: Lahey CLINIC. Disponible en: http://www.lahey.org/studies/.
[10.]
H. Goossens, B. Grabein.
Prevalence and antimicrobial susceptibility data for extended- spectrum beta-lactamase- and AmpC-producing Enterobacteriaceae from the MYSTIC Program in Europe and the United States (1997-2004).
Diagn Microbiol Infect Dis, 53 (2005), pp. 257-264
[11.]
P.J. Turner.
Meropenem activity against European isolates: report on the MYSTIC (Meropenem yearly susceptibility test information collection) 2006 results.
Diagn Microbiol Infect Dis, 60 (2008), pp. 185-192
[12.]
D.M. Livermore.
Mechanisms of resistance to cephalosporin antibiotics.
Drugs, 34 (1987), pp. 64-88
[13.]
R. Canton, A. Oliver, T.M. Coque, M. del C. Varela, J.C. Perez-Diaz, F. Baquero.
Epidemiology of extended-spectrum beta-lactamase-producing Enterobacter isolates in a Spanish hospital during a 12-year period.
J Clin Microbiol, 40 (2002), pp. 1237-1243
[14.]
Y. de Gheldre, M.J. Struelens, Y. Glupczynski, P. de Mol, N. Maes, C. Nonhoff, et al.
National epidemiologic surveys of Enterobacter aerogenes in Belgian hospitals from 1996 to 1998.
J Clin Microbiol, 39 (2001), pp. 889-896
[15.]
D. Szabo, M.A. Melan, A.M. Hujer, R.A. Bonomo, K.M. Hujer, C.R. Bethel, et al.
Molecular analysis of the simultaneous production of two SHV-type extended-spectrum beta-lactamases in a clinical isolate of Enterobacter cloacae by using single-nucleotide polymorphism genotyping.
Antimicrob Agents Chemother, 49 (2005), pp. 4716-4720
[16.]
W.L. Yu, K.C. Cheng, C.J. Chi, H.E. Chen, Y.C. Chuang, L.T. Wu.
Characterisation and molecular epidemiology of extended-spectrum beta-lactamase-producing Enterobacter cloacae isolated from a district teaching hospital in Taiwan.
Clin Microbiol Infect, 12 (2006), pp. 579-582
[17.]
A. Fernández, M. Poza, J. Pérez, R. Sáez-Nieto, R. Villanueva, G. Bou.
Estudio de un brote nosocomial causado por Enterobacter cloacae (Ec) multirresistente productor de la beta-lactamasa SFO-1. XIII Reunión SEIMC.
Infecciones por microorganismos multirresistentes, Enferm Infecc Microbiol Clin, (2009),
[18.]
L.M. Aragon, B. Mirelis, E. Miro, C. Mata, L. Gomez, A. Rivera, et al.
Increase in betalactam-resistant Proteus mirabilis strains due to CTX-M- and CMY-type as well as new VEB- and inhibitor-resistant TEM-type beta-lactamases.
J Antimicrob Chemother, 61 (2008), pp. 1029-1032
[19.]
A. Cloeckaert, K. Praud, B. Doublet, A. Bertini, A. Carattoli, P. Butaye, et al.
Dissemination of an extended-spectrum-beta-lactamase blaTEM-52 gene-carrying IncI1 plasmid in various Salmonella enterica serovars isolated from poultry and humans in Belgium and France between 2001 and 2005.
Antimicrob Agents Chemother, 51 (2007), pp. 1872-1875
[20.]
A. Herrero, M.C. Mendoza, E.J. Threlfall, M.R. Rodicio.
Detection of Salmonella enterica serovar Typhimurium with pUO-StVR2-like virulence-resistance hybrid plasmids in the United Kingdom.
Eur J Clin Microbiol Infect Dis, 28 (2009), pp. 1087-1093
[21.]
M. Pardos, C. Seral, M. Arias, M. Millán, M. Gude, S. Algarate, et al.
Caracterización de los mecanismos de resistencia a betalactámicos en Salmonella Typhimurium multirresistentes.
XIII Reunión SEIMC: Infecciones por microorganismos multirresistentes, Enferm Infecc Microbiol Clin, (2009),
[22.]
Boyle F, Morris D, Kariuki S, Revathi G, Cormican M. Phenotypic and genotypic analysis of a novel extended-spectrum β-lactamase phenotype (cefepimease). 19th European Congress of Clinical Microbiology and Infectious Diseases. Helsinki, Finlandia: Eur J Clin Microbiol Infect. 2009.
[23.]
C.M. Parry, E.J. Threlfall.
Antimicrobial resistance in typhoidal and non-typhoidal Salmonellae.
Curr Opin Infect Dis, 21 (2008), pp. 531-538
[24.]
I. Riaño, M. García-Campello, Y. Sáenz, P. Álvarez, L. Vinué, M. Lantero, et al.
Occurrence of extended-spectrum beta-lactamase-producing Salmonella enterica in northern Spain with evidence of CTX-M-9 clonal spread among animals and humans.
Clin Microbiol Infect, 15 (2009), pp. 292-295
[25.]
F.X. Weill, R. Lailler, K. Praud, A. Kerouanton, L. Fabre, A. Brisabois, et al.
Emergence of extended-spectrum-beta-lactamase (CTX-M-9)-producing multiresistant strains of Salmonella enterica serotype Virchow in poultry and humans in France.
J Clin Microbiol, 42 (2004), pp. 5767-5773
[26.]
T.M. Coque, F. Baquero, R. Canton.
Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe.
Euro Surveill, 13 (2008),
[27.]
L. Fabre, A. Delaune, E. Espie, K. Nygard, M. Pardos, L. Polomack, et al.
Chromosomal integration of the extended-spectrum beta-lactamase gene blaCTX-M-15 in Salmonella enterica serotype Concord isolates from internationally adopted children.
Antimicrob Agents Chemother, 53 (2009), pp. 1808-1816
[28.]
M. de Toro, Y. Sáenz, B. Rojo-Bezares, I. Riaño, E. Undabeitia, M. García-Campello, et al.
Caracterización genética de los mecanismos de resistencia a antibióticos en cepas clínicas de Salmonella enterica con resistencia a amoxicilina-clavulánico o a cefalosporinas de tercera generación.
XIII Reunión SEIMC: Infecciones por microorganimos multirresistentes, Enferm Infecc Microbiol Clin, (2009),
[29.]
Oliver A, Cantón R. Enterobacterias productoras de beta-lactamasas plasmídicas de espectro extendido. 2003; En: Enferm Infecc Microbiol Clin. Boletín de Control de Calidad SEIMC. Disponible en: http://www.seimc.org.
[30.]
D.A. Weber, C.C. Sanders.
Diverse potential of beta-lactamase inhibitors to induce class I enzymes.
Antimicrob Agents Chemother, 34 (1990), pp. 156-158
[31.]
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: nineteenth informational supplement. CLSI document M100-S19. Wayne, PA, 2009.
[32.]
I. Wiegand, H.K. Geiss, D. Mack, E. Sturenburg, H. Seifert.
Detection of extended-spectrum beta-lactamases among Enterobacteriaceae by use of semiautomated microbiology systems and manual detection procedures.
J Clin Microbiol, 45 (2007), pp. 1167-1174
[33.]
T. Spanu, M. Sanguinetti, M. Tumbarello, T. D’Inzeo, B. Fiori, B. Posteraro, et al.
Evaluation of the new VITEK 2 extended-spectrum beta-lactamase (ESBL) test for rapid detection of ESBL production in Enterobacteriaceae isolates.
J Clin Microbiol, 44 (2006), pp. 3257-3262
[34.]
The European Committee on Antimicrobial Susceptibility Testing-EUCAST. 2009; Ed.: European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Disponible en: http://www.eucast.org/.
[35.]
V. Jarlier, M.H. Nicolas, G. Fournier, A. Philippon.
Extended broad-spectrum betalactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns.
Rev Infect Dis, 10 (1988), pp. 867-878
[36.]
E. Sturenburg, M. Lang, M.A. Horstkotte, R. Laufs, D. Mack.
Evaluation of the MicroScan ESBL plus confirmation panel for detection of extended-spectrum beta-lactamases in clinical isolates of oxyimino-cephalosporin-resistant Gram-negative bacteria.
J Antimicrob Chemother, 54 (2004), pp. 870-875
[37.]
M.A. Leverstein-van Hall, A.C. Fluit, A. Paauw, A.T. Box, S. Brisse, J. Verhoef.
Evaluation of the Etest ESBL and the BD Phoenix, VITEK 1, and VITEK 2 automated instruments for detection of extended-spectrum beta-lactamases in multiresistant Escherichia coli and Klebsiella spp.
J Clin Microbiol, 40 (2002), pp. 3703-3711
[38.]
T. Naas, D.M. Livermore, P. Nordmann.
Characterization of an LysR family protein, SmeR from Serratia marcescens S6, its effect on expression of the carbapenemhydrolyzing beta-lactamase Sme-1, and comparison of this regulator with other beta-lactamase regulators.
Antimicrob Agents Chemother, 39 (1995), pp. 629-637
[39.]
F. Robin, J. Delmas, M. Archambaud, C. Schweitzer, C. Chanal, R. Bonnet.
CMT-type beta-lactamase TEM-125, an emerging problem for extended-spectrum beta-lactamase detection.
Antimicrob Agents Chemother, 50 (2006), pp. 2403-2408
[40.]
G. Barnaud, Y. Benzerara, J. Gravisse, L. Raskine, M.J. Sanson-Le Pors, R. Labia, et al.
Selection during cefepime treatment of a new cephalosporinase variant with extended- spectrum resistance to cefepime in an Enterobacter aerogenes clinical isolate.
Antimicrob Agents Chemother, 48 (2004), pp. 1040-1042
[41.]
García Rodríguez JA, Cantón R, Elías Sánchez J, Gómez-Lus ML, Martínez Martínez L, Rodríguez-Avial C, et al. 12. Métodos especiales para el estudio de la sensibilidad a los antimicrobianos. 2000; En: Picazo JJ, ed. Procedimientos en Microbiología Clínica. Disponible en: http://www.seimc.org.
[42.]
C.C. Sanders, W.E. Sanders Jr., R.V. Goering.
In vitro antagonism of beta-lactam antibiotics by cefoxitin.
Antimicrob Agents Chemother, 21 (1982), pp. 968-975
[43.]
B. Mirelis, A. Rivera, E. Miró, R.J. Mesa, F. Navarro, P. Coll.
A simple phenotypic method for differentiation between acquired and chromosomal AmpC beta-lactamases in Escherichia coli.
Enferm Infecc Microbiol Clin, 24 (2006), pp. 370-372
[44.]
Comité de l’Antibiogramme (CA-SFM) Les recommandations 2009. Ed.: Société Française de Microbiologie. Disponible en: www.sfm.asso.fr.
[45.]
C. Peña, M. Pujol, C. Ardanuy, A. Ricart, R. Pallares, J. Linares, et al.
Epidemiology and successful control of a large outbreak due to Klebsiella pneumoniae producing extended-spectrum beta-lactamases.
Antimicrob Agents Chemother, 42 (1998), pp. 53-58
[46.]
S. Huovinen.
Rapid isoelectric focusing of plasmid-mediated beta-lactamases with Pharmacia PhastSystem.
Antimicrob Agents Chemother, 32 (1988), pp. 1730-1732
[47.]
A. Carattoli, S. Lovari, A. Franco, G. Cordaro, P. di Matteo, A. Battisti.
Extended-spectrum beta-lactamases in Escherichia coli isolated from dogs and cats in Rome, Italy, from 2001 to 2003.
Antimicrob Agents Chemother, 49 (2005), pp. 833-835
[48.]
H. Schumacher, U. Skibsted, R. Skov, J. Scheibel.
Cefuroxime resistance in Escherichia coli. Resistance mechanisms and prevalence.
APMIS, 104 (1996), pp. 531-538
[49.]
O. Kallman, C.G. Giske, O. Samuelsen, B. Wretlind, M. Kalin, B. Olsson-Liljequist.
Interplay of efflux, impermeability, and AmpC activity contributes to cefuroxime resistance in clinical, non-ESBL-producing isolates of Escherichia coli.
Microb Drug Resist, 15 (2009), pp. 91-95
[50.]
A.M. Bailey, C. Constantinidou, A. Ivens, M.I. Garvey, M.A. Webber, N. Coldham, et al.
Exposure of Escherichia coli and Salmonella enterica serovar Typhimurium to triclosan induces a species-specific response, including drug detoxification.
J Antimicrob Chemother, 64 (2009), pp. 973-985
[51.]
G. Arlet, M. Rouveau, A. Philippon.
Substitution of alanine for aspartate at position 179 in the SHV-6 extended-spectrum beta-lactamase.
FEMS Microbiol Lett, 152 (1997), pp. 163-167
[52.]
C. Levesque, L. Piche, C. Larose, P.H. Roy.
PCR mapping of integrons reveals several novel combinations of resistance genes.
Antimicrob Agents Chemother, 39 (1995), pp. 185-191
Copyright © 2010. Elsevier España S.L.. Todos los derechos reservados
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos