metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Biología molecular en el diagnóstico de la infección respiratoria aguda de or...
Información de la revista
Vol. 26. Núm. S9.
Utilidad de la biología molecular en el diagnóstico microbiológico
Páginas 26-32 (julio 2008)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 26. Núm. S9.
Utilidad de la biología molecular en el diagnóstico microbiológico
Páginas 26-32 (julio 2008)
Acceso a texto completo
Biología molecular en el diagnóstico de la infección respiratoria aguda de origen bacteriano
Molecular biology in the diagnosis of acute bacterial infection of the respiratory tract
Visitas
5022
José María Marimóna,b,
Autor para correspondencia
josemaria.marimonortizdez@osakidetza.net

Correspondencia: Servicio de Microbiología. Hospital Donostia. P.° Dr. Beguiristain, s/n. 20014 San Sebastián. Guipúzcoa. España.
, Gustavo Cillaa, Emilio Pérez-Tralleroa,b,c
a Servicio de Microbiología. Hospital Donostia. San Sebastián. Guipúzcoa. España
b CIBER Enfermedades Respiratorias (CIBERES). Bunyola. Mallorca. España
c Departamento de Medicina Preventiva y Salud Pública. Facultad de Medicina. Universidad del País Vasco. San Sebastián. Guipúzcoa. España
Este artículo ha recibido
Información del artículo

Los métodos de diagnóstico bacteriológico empleados tradicionalmente en las infecciones respiratorias agudas (IRA) tienen limitaciones de sensibilidad (cultivo, detección directa de antígenos, etc.), o requieren un tiempo prolongado para obtener resultados (aparición de anticuerpos). En los últimos años, se han desarrollado técnicas de amplificación de ácidos nucleicos (TAAN) que permiten la detección de dianas genéticas específicas de cada patógeno en muestras clínicas. Estas técnicas han mostrado ser más sensibles que el cultivo o la detección directa y, a diferencia de las serológicas, trabajan eficazmente en fase aguda. Sin embargo, tienen limitaciones, como la presencia ocasional de inhibidores de la amplificación en muestras clínicas, la persistencia de Mycoplasma pneumoniae o Chlamydophila pneumoniae en la mucosa de algunas personas, y en la diferenciación entre infección patógena y colonización en el caso de bacterias que forman parte de la flora habitual de la vía respiratoria (Streptococcus pneumoniae, etc.). Las recientemente desarrolladas TAAN en tiempo real han generado expectativas de resolver algunos de estos problemas, al poder cuantificar la carga bacteriana. En el diagnóstico etiológico de la IRA debida a S. pneumoniae, las TAAN siguen estando esencialmente en el campo de la investigación. En el caso de M. pneumoniae y C. pneumoniae, su combinación con la serología mejora la capacidad diagnóstica. Estos métodos son sensibles y específicos para detectar Legionella; sin embargo, su utilidad práctica está por establecer, a la espera de una valoración en relación con la antigenuria. Actualmente, son una alternativa ventajosa para Bordetella pertussis, pero de momento no tienen utilidad en la infección aguda por Coxiella burnetii.

Palabras clave:
Reacción en cadena de la polimerasa
Streptococcus pneumoniae
Mycoplasma pneumoniae
Chlamydophila pneumoniae
Legionella pneumophila
Bordetella pertussis

The bacteriological methods traditionally used in the diagnosis of acute respiratory infections (ARI) have limited sensitivity (culture, direct antigen detection, etc.) or require long periods to obtain results (appearance of antibodies). In the last few years, nucleic acid amplification techniques (NAAT) have been developed that allow pathogen-specific genetic targets to be detected in clinical samples. These techniques have been proven to be more sensitive than culture or direct detection and, unlike serological tests, are effective in the acute phase of the infection. However, NAAT also have certain limitations, such as the occasional presence of amplification inhibitors in clinical samples, the persistence of Mycoplasma pneumoniae or Chlamydophila pneumoniae in the mucosa of some individuals, and the lack of discrimination between pathogen infection and colonization in bacteria forming part of normal respiratory tract flora (Streptococcus pneumoniae…). Recently developed real-time NAAT have raised expectations that some of these obstacles will be resolved, since these techniques allow bacterial load to be quantified. In the etiological diagnosis of ARI due to S. pneumoniae, the use of NAAT is still in an experimental phase. In M. pneumoniae and C. pneumoniae, combining NAAT with serological tests could potentially improve diagnosis. NAAT show good sensitivity and specificity in the detection of Legionella; however, the practical utility of these techniques should be weighed against that of antigenuria. NAAT provide advantages over other techniques in Bordetella pertussis. At present, these techniques are not useful in the diagnosis of Coxiella burnetii acute infections.

Key words:
Polymerase chain reaction
Streptococcus pneumoniae
Mycoplasma pneumoniae
Chlamydophila pneumoniae
Legionella pneumophila
Bordetella pertussis
El Texto completo está disponible en PDF
Bibliografía
[1.]
M.J. Fine, M.A. Smith, C.A. Carson, S.S. Mutha, S.S. Sankey, L.A. Weissfeld, et al.
Prognosis and outcomes of patients with community-acquired pneumonia.
JAMA, 275 (1996), pp. 134-141
[2.]
J. Garau, E. Calbo.
Community-acquired pneumonia.
[3.]
M. Woodhead.
Community-acquired pneumonia in Europe: causative pathogens and resistance patterns.
Eur Respir J, 36 (2002), pp. 20S-27S
[4.]
A. Ruiz-Gonzalez, M. Falguera, A. Nogues, M. Rubio-Caballero.
Is Streptococcus pneumoniae the leading cause of pneumonia of unknown etiology? A microbiologic study of lung aspirates in consecutive patients with community-acquired pneumonia.
Am J Med, 106 (1999), pp. 385-390
[5.]
K.B. Waites, D.F. Talkington.
Mycoplasma pneumoniae and its role as a human pathogen.
Clin Microbiol Rev, 17 (2004), pp. 697-728
[6.]
C.C. Kuo, L.A. Jackson, L.A. Campbell, J.T. Grayston.
Chlamydia pneumoniae (TWAR).
Clin Microbiol Rev, 8 (1995), pp. 451-461
[7.]
M. Montes, G. Cilla, D. Vicente, V. Nieto, M. Ercibengoa, E. Perez-Trallero.
Gipuzkoa, Basque Country, Spain (1984-2004): a hyperendemic area of Q fever.
Ann N Y Acad Sci, 1078 (2006), pp. 129-132
[8.]
F. Pozo, I. Casas, G. Ruiz, A. Falcón, P. Pérez-Breña.
Aplicación de los métodos moleculares al diagnóstico y estudio epidemiológico de las infecciones respiratorias causadas por virus.
Enferm Infecc Microbiol Clin, 26 (2008), pp. 15-25
[9.]
R. Dagan, O. Shriker, I. Hazan, E. Leibovitz, D. Greenberg, F. Schlaeffer, et al.
Prospective study to determine clinical relevance of detection of pneumococcal DNA in sera of children by PCR.
J Clin Microbiol, 36 (1998), pp. 669-673
[10.]
D. Llull, R. Lopez, E. Garcia.
Characteristic signatures of the lytA gene provide a basis for rapid and reliable diagnosis of Streptococcus pneumoniae infections.
J Clin Microbiol, 44 (2006), pp. 1250-1256
[11.]
G. Carvalho Mda, M.L. Tondella, K. McCaustland, L. Weidlich, L. McGee, L.W. Mayer, et al.
Evaluation and improvement of real-time PCR assays targeting lytA, ply, and psaA genes for detection of pneumococcal DNA.
J Clin Microbiol, 45 (2007), pp. 2460-2466
[12.]
M.L. Lorente, M. Falguera, A. Nogués, A.R. González, M.T. Merino, M.R. Caballero.
Diagnosis of pneumococcal pneumonia by polymerase chain reaction (PCR) in whole blood: a prospective clinical study.
Thorax, 55 (2000), pp. 133-137
[13.]
A.M. Kearns, C. Graham, D. Burdess, J. Heatherington, R. Freeman.
Rapid real-time PCR for determination of penicillin susceptibility in pneumococcal meningitis, including culture-negative cases.
J Clin Microbiol, 40 (2002), pp. 682-684
[14.]
G.M. Abdeldaim, K. Strålin, P. Olcén, J. Blomberg, B. Herrmann.
Toward a quantitative DNA-based definition of pneumococcal pneumonia: a comparison of Streptococcus pneumoniae target genes, with special reference to the Spn9802 fragment.
Diagn Microbiol Infect Dis, 60 (2008), pp. 143-150
[15.]
N. Johansson, M. Kalin, C.G. Giske, J. Hedlund.
Quantitative detection of Streptococcus pneumoniae from sputum samples with real-time quantitative polymerase chain reaction for etiologic diagnosis of community-acquired pneumonia.
Diagn Microbiol Infect Dis, 60 (2008), pp. 255-261
[16.]
S. Yang, S. Lin, A. Khalil, C. Gaydos, E. Nuemberger, G. Juan, et al.
Quantitative PCR assay using sputum samples for rapid diagnosis of pneumococcal pneumonia in adult emergency department patients.
J Clin Microbiol, 43 (2005), pp. 3221-3226
[17.]
M. Montes, G. Cilla, M. Alcorta, E. Pérez-Trallero.
High prevalence of Chlamydia pneumoniae infection in children and young adults in Spain.
Pediatr Infect Dis J, 11 (1992), pp. 972-973
[18.]
S.M. Schmidt, C.E. Muller, B. Mahner, S.K. Wiersbitzky.
Prevalence, rate of persistence and respiratory tract symptoms of Chlamydia pneumoniae infection in 1211 kindergarten and school age children.
Pediatr Infect Dis J, 21 (2002), pp. 758-762
[19.]
M.R. Hammerschlag.
Chlamydia and Chlamydiales: beyond Chlamydia trachomatis.
Pediatr Infect Dis J, 26 (2007), pp. 639-640
[20.]
T. Rattei, S. Ott, M. Gutacker, J. Rupp, M. Maass, S. Schreiber, et al.
Genetic diversity of the obligate intracellular bacterium Chlamydophila pneumoniae by genome-wide analysis of single nucleotide polymorphisms: evidence for highly clonal population structure.
BMC Genomics, 8 (2007), pp. 355
[21.]
S.F. Dowell, R.W. Peeling, J. Boman, G.M. Carlone, B.S. Fields, J. Guarner, et al.
Standardizing Chlamydia pneumoniae assays: recommendations from the Centers for Disease Control and Prevention (USA) and the Laboratory Centre for Disease Control (Canada).
Clin Infect Dis, 33 (2001), pp. 492-503
[22.]
S. Kumar, M.R. Hammerschlag.
Acute respiratory infection due to Chlamydia pneumoniae: current status of diagnostic methods.
Clin Infect Dis, 44 (2007), pp. 568-576
[23.]
R. Räty, E. Rönkö, M. Kleemola.
Sample type is crucial to the diagnosis of Mycoplasma pneumoniae pneumonia by PCR.
J Med Microbiol, 54 (2005), pp. 287-291
[24.]
K. Strålin.
Usefulness of aetiological tests for guiding antibiotic therapy in community-acquired pneumonia.
Int J Antimicrob Agents, 31 (2008), pp. 3-11
[25.]
D.R. Murdoch.
Diagnosis of Legionella infection.
Clin Infect Dis, 36 (2003), pp. 64-69
[26.]
Fields, S. Barry, Benson, F. Robert, Besser., E. Richard.
Legionella and Legionnaires’ Disease: 25 Years of Investigation.
Clin Microbiol Rev, 15 (2002), pp. 506-526
[27.]
V.L. Yu, J.F. Plouffe, M.C. Pastoris, J.E. Stout, M. Schousboe, A. Widmer, et al.
Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: An international collaborative survey.
J Infect Dis, 186 (2002), pp. 127-128
[28.]
J. Roig, C. Domingo, J. Morera.
Legionnaires’ disease.
Chest, 105 (1994), pp. 1817-1825
[29.]
J. Domínguez, N. Galí, L. Matas, P. Pedroso, A. Hernández, E. Padilla, et al.
Evaluation of a rapid immunochromatographic assay for the detection of Legionella antigen in urine samples.
Eur J Clin Microbiol Infect Dis, 18 (1999), pp. 896-898
[30.]
U. Reischl, H.J. Linde, N. Lehn, O. Landt, K. Barratt, N. Wellinghausen.
Direct detection and differentiation of Legionella spp. and Legionella pneumophila in clinical specimens by dual-color real-time PCR and melting curve analysis.
J Clin Microbiol, 40 (2002), pp. 3814-3817
[31.]
B.M. Diederen, J.A. Kluytmans, C.M. Vandenbroucke-Grauls, M.F. Peeters.
Utility of real-time PCR for diagnosis of Legionnaires’ disease in routine clinical practice.
J Clin Microbiol, 46 (2008), pp. 671-677
[32.]
B.L. Herpers, B.M. De Jongh, K. Van der Zwaluw, E.J. Van Hannen.
Real-Time PCR assay targets the 23S-5S spacer for direct detection and differentiation of Legionella spp. and Legionella pneumophila.
J Clin Microbiol, 41 (2003), pp. 4815-4816
[33.]
M.A. Bencini, A.J.C. Van den Brule, E.C.J. Claas, M.H.A. Hermans, W.J.G. Melchers, G.T. Noordhoek, et al.
Multicenter comparison of molecular methods for detection of Legionella spp. in sputum samples.
J Clin Microbiol, 45 (2007), pp. 3390-3392
[34.]
D.S. Lindsay, W.H. Abraham, W. Findlay, P. Christie, F. Johnston, G.F. Edwards.
Laboratory diagnosis of legionnaires’ disease due to Legionella pneumophila serogroup 1: comparison of phenotypic and genotypic methods.
J Med Microbiol, 53 (2004), pp. 183-187
[35.]
B.M. Diederen, C.M. De Jong, J.A. Kluytmans, A. Van der Zee, M.F. Peeters.
Detection and quantification of Legionella pneumophila DNA in serum: case reports and review of the literature.
J Med Microbiol, 55 (2006), pp. 639-642
[36.]
M. Maiwald, M. Schill, C. Stockinger, J.H. Helbig, P.C. Lück, W. Witzleb, et al.
Detection of Legionella DNA in human and guinea pig urine samples by the polymerase chain reaction.
Eur J Clin Microbiol Infect Dis, 14 (1995), pp. 25-33
[37.]
N. Orta Mira, M.R. Guna Serrano, C. Gimeno Cardona, J.L. Pérez.
Control de calidad en microbiología molecular.
Enferm Infecc Microbiol Clin, 26 (2008), pp. 2-7
[38.]
The European Guidelines for Control and Prevention of Travel Associated Legionnaires’ Disease. Microbiological case definitions. En: http://www.ewgli.org/data/european_guidelines/eg_appendix1.pdf
[39.]
B. Vincart, R. De Mendonça, S. Rottiers, F. Vermeulen, M.J. Struelens, O. Denis.
A specific real-time PCR assay for the detection of Bordetella pertussis.
J Med Microbiol, 56 (2007), pp. 918-920
[40.]
E.M. Glare.
Analysis of a repetitive sequence from Bordetella pertussis and its application to the diagnosis of pertussis using polymerase chain reaction.
J Clin Microbiol, 28 (1990), pp. 1982-1987
[41.]
B. Arico, R. Rappuoli.
Bordetella parapertussis and Bordetella bronchiseptica contain transcriptionally silent pertussis toxin genes.
J Bacteriol, 169 (1987), pp. 2847-2853
[42.]
K.E. Templeton, S.A. Scheltinga, A. Van der Zee, B.M.W. Diederen, A.M. Kruijssen, H. Goossens, et al.
Evaluation of Real-Time PCR for detection of and discrimination between Bordetella pertussis, Bordetella parapertussis, and Bordetella holmesii for clinical diagnosis.
J Clin Microbiol, 41 (2003), pp. 4121-4126
[43.]
K.B. Register, G.N. Sanden.
Prevalence and sequence variants of IS481 in Bordetella bronchiseptica: implications for IS481-based detection of Bordetella pertussis.
J Clin Microbiol, 44 (2006), pp. 4577-4583
[44.]
K. Kösters, U. Reischl, J. Schmetz, M. Riffelmann, C.H. Wirsing von König.
Real-time LightCycler PCR for detection and discrimination of Bordetella pertussis and Bordetella parapertussis.
J Clin Microbiol, 40 (2002), pp. 1719-1722
[45.]
J. García-Martínez, F. Chaves, E. Salto, J.R. Otero.
Bordetella pertussis detection by real-time PCR, immunofluorescence and culture: prospective evaluation and molecular epidemiology.
Enferm Infecc Microbiol Clin, 24 (2006), pp. 500-504
Copyright © 2008. Elsevier España S.L.. Todos los derechos reservados
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos