metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Clinical relevance of mechanisms of antifungal drug resistance in yeasts
Información de la revista
Vol. 20. Núm. 9.
Páginas 462-470 (noviembre 2002)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 20. Núm. 9.
Páginas 462-470 (noviembre 2002)
Acceso a texto completo
Clinical relevance of mechanisms of antifungal drug resistance in yeasts
Importancia clínica de los mecanismos de resistencia a los antifúngicos en levaduras
Visitas
3838
Dominique Sanglard1
Autor para correspondencia
Dominique.Sanglard@chuv.hospvd.ch

Dr. D. Sanglard. Institute of Microbiology. University Hospital Lausanne. Ch-1011 Lausanne. Switzerland.
Institute of Microbiology. University Hospital Lausanne. Switzerland.
Este artículo ha recibido
Información del artículo

A limited number of antifungal agents including azoles, polyenes, pyrimidine analogues are used today to combat infections caused by yeast pathogens. While clinical factors can contribute to failures to antifungal treatments, yeast pathogens exposed to these agents can still limit their action either because they are intrinsically resistant or because they acquire specific resistance mechanisms. Microbiological methods are available to measure the susceptibility of yeast pathogens against the existing antifungal agents and to distinguish between antifungal susceptible and antifungal resistant organisms. This distinction can ideally predict the success or failure of a treatment in clinical situations and is available only for a limited number of antifungal agents, i.e. the azole antifungals fluconazole and itraconazole and the pyrimidine analogue 5-fluorocytosine. Cases of antifungal resistance have been reported for almost all classes of antifungal agents, but they have been mainly documented for the pyrimidine analogue 5-fluorocytosine and azole antifungals mainly in Candida species and less frequently in Cryptococcus species. This review summarizes the current knowledge on the different mechanisms of resistance to these agents in these yeast pathogens.

En la actualidad se están empleando un número limitado de agentes antifúngicos, inluyendo azoles, polienos y análogos de pirimidinas, para combatir las infecciones causadas por levaduras patógenas. Ciertos factores clínicos pueden contribuir al fracaso del tratamiento antifúngico; por otra parte, las levaduras expuestas a estos agentes pueden limitar la actividad de los mismos, por ser intrínsecamente resistentes o por adquirir mecanismos de resistencia específicos. Se dispone de métodos microbiológicos para medir la sensibilidad de las levaduras patógenas a los antifúngicos disponibles, y para distinguir entre organismos sensibles y resistentes a los mismos. Esta distinción, de forma ideal, debiera predecir el éxito o el fracaso del tratamiento desde un punto de vista clínico, pero está disponible sólo para un número limitado de antifúnficos: los azoles, fluconazol e itraconazol, y el análogo de la pirimidina 5-fluorocitosina. Se han publicado casos de resistencia a los antifúngicos para casi todas las clases disponibles de estos agentes, pero sobre todo se han documentado en relación con la 5-fluorocitosina y los azoles en especies de Candida y, con menos frecuencia, en especies de Cryptococcus. En esta revisión se resume el conocimiento actual de los diferentes mecanismos de resistencia a los antifúngicos en levaduras patógenas.

Palabras clave:
Resistencia a antifúngicos
Candida
Cryptococcus
Key words:
Antifungal drug resistance
Candida
Cryptococcus
El Texto completo está disponible en PDF
References
[1.]
J.H. Rex, M.A. Pfaller, J.N. Galgiani, M.S. Bartlett, A. Espinel-Ingroff, M.A. Ghannoum.
Development of interpretive breakpoints for antifungal susceptibility testing: conceptual framework and analysis of in vitro-in vivo correlation data for fluconazole, itraconazole, and Candida infections. Subcommittee on Antifungal Susceptibility Testing of the National Committee for Clinical Laboratory Standards.
Clin Infect Dis, 24 (1997), pp. 235-247
[2.]
J.H. Rex, C.R. Cooper, W.G. Merz, J.N. Galgiani, E.J. Anaissie.
Detection of amphotericin B-resistant Candida isolates in a broth-based system.
Antimicrob Agents Chemother, 39 (1995), pp. 906-909
[3.]
F. Peyron, A. Favel, A. Michel-Nguyen, M. Gilly, P. Regli, A. Bolmstrom.
Improved detection of amphotericin B-resistant isolates of Candida lusitaniae by Etest.
J Clin Microbiol, 39 (2001), pp. 339-342
[4.]
M.A. Pfaller, S.A. Messer, R.J. Hollis.
Strain delineation an antifungal susceptibilities of epidemiologically releated and unrelated isolates of Candida lusitaniae.
Diagnostic Microbiology and Infectious Disease, 20 (1994), pp. 127-133
[5.]
T.J. Walsh, G.P. Melcher, M.G. Rinaldi, J. Lecciones, D.A. McGough, P. Kelly.
Trichosporon beigelii, an emerging pathogen resistant to amphotericin B.
Journal of Clinical Microbiology, 28 (1990), pp. 1616-1622
[6.]
F.S. Nolte, T. Parkinson, D.J. Falconer, S. Dix, J. Williams, C. Gilmore.
Isolation and characterization of fluconazole- and amphotericin B-resistant Candida albicans from blood of two patients with leukemia.
Antimicrobial Agents and Chemotherapy, 44 (1997), pp. 196-199
[7.]
S.L. Kelly, D.C. Lamb, M. Taylor, A.J. Corran, B.C. Baldwin, W.G. Powderly.
Resistance to amphotericin B associated with defective sterol delta 8-7 isomerase in a Cryptococcus neoformans strain from an AIDS patient.
FEMS Microbiol Lett, 122 (1994), pp. 39-42
[8.]
J.D. Dick, W.G. Merz, R. Saral.
Incidence of polyene-resistant yeasts recovered from clinical specimens.
Antimicrob Agents Chemother, 18 (1980), pp. 158-163
[9.]
M.L. Sokol-Anderson, J. Brajtburg, G. Medoff.
Amphotericin B-induced oxidative damage and killing of Candida albicans.
Journal of Infectious Diseases, 154 (1986), pp. 76-83
[10.]
A. Polak.
Mode of action studies..
Chemotheray of fungal Diseases., pp. 153-182
[11.]
D.C. Coleman, M.G. Rinaldi, K.A. Haynes, J.H. Rex, R.C. Summerbell, E.J. Anaissie.
Importance of Candida species other than Candida albicans as opportunistic pathogens.
Med Mycol, 36 (1998), pp. 156-165
[12.]
A.H. Groll, S.C. Piscitelli, T.J. Walsh.
Clinical pharmacology of systemic antifungal agents: A comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development.
Adv Pharmacol, 44 (1998), pp. 343-500
[13.]
J.H. Rex, J.E. Bennett, A.M. Sugar, P.G. Pappas, Horst C.M. Van der, J.E. Edwards.
A randomized trial comparing fluconazole with amphotericin B for the treatment of candidemia in patients without neutropenia. Candidemia Study Group and the National Institute.
N Engl J Med, 331 (1994), pp. 1325-1330
[14.]
T.C. White, K.A. Marr, R.A. Bowden.
Clinical, cellular, and molecular factors that contribute to antifungal drug resistance.
Clin Microbiol Rev, 11 (1998), pp. 382-402
[15.]
D. Sanglard, J. Bille.
Current understanding of the mode of action and of resistance mechanisms to conventional and emerging antifungal agents for treatment of Candida infections.Candida and candidiasis..
ASM Press, (2002),
[16.]
D. Sanglard, K. Kuchler, F. Ischer, J.L. Pagani, M. Monod, J. Bille.
Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters.
Antimicrobial Agents and Chemotherapy, 39 (1995), pp. 2378-2386
[17.]
D. Sanglard, F. Ischer, M. Monod, J. Bille.
Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC-transporter gene.
Microbiology, 143 (1997), pp. 405-416
[18.]
K.A. Marr, C.N. Lyons, T.R. Rustad, R.A. Bowden, T.C. White, T. Rustad.
Rapid, transient fluconazole resistance in Candida albicans is associated with increased mRNA levels of CDR.
Antimicrob Agents Chemother, 42 (1998), pp. 2584-2589
[19.]
K.A. Marr, C.N. Lyons, K. Ha, T.R. Rustad, T.C. White.
Inducible azole resistance associated with a heterogeneous phenotype in Candida albicans.
Antimicrob Agents Chemother, 45 (2001), pp. 52-59
[20.]
D. Sanglard, F. Ischer, J. Bille.
Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata.
Antimicrob Agents Chemother, 45 (2001), pp. 1174-1183
[21.]
D. Sanglard, F. Ischer, M. Monod, J. Bille.
Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors.
Antimicrob Agents Chemother, 40 (1996), pp. 2300-2305
[22.]
Bossche H. Vanden, P. Marichal, J. Gorrens, D. Bellens, H. Moereels, P.A.J. Janssen.
Mutation in cytochrome P450-dependent 14a-demethylase results in decreased affinity for azole antifungals.
Biochemical Society Transactions, 18 (1990), pp. 56-59
[23.]
D.C. Lamb, A. Corran, B.C. Baldwin, J. Kwon-Chung, S.L. Kelly.
Resistant P450A1 activity in azole antifungal tolerant Cryptococcus neoformans from AIDS patients.
FEBS Letters, 368 (1995), pp. 326-330
[24.]
D. Sanglard, F. Ischer, L. Koymans, J. Bille.
Amino acid substitutions in the cytochrome P450 lanosterol 14a-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contributing to the resistance to azole antifungal agents.
Antimicrob Agents Chemother, 42 (1998), pp. 241-253
[25.]
P. Marichal, Bossche H. Vanden, F.C. Odds, G. Nobels, D.W. Warnock, V. Timmerman.
Molecular biological characterization of an azole-resistant Candida glabrata isolate.
Antimicrob Agents Chemother, 41 (1997), pp. 2229-2237
[26.]
Backer M.D. De, T. Ilyina, X.J. Ma, S. Vandoninck, W.H. Luyten, Bossche H. Vanden.
Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray.
Antimicrob Agents Chemother, 45 (2001), pp. 1660-1670
[27.]
Y. Miyazaki, A. Geber, H. Miyazaki, D. Falconer, T. Parkinson, C. Hitchcock.
Cloning, sequencing, expression and allelic sequence diversity of ERG3 (C-5 sterol desaturase gene) in Candida albicans.
Gene, 236 (1999), pp. 43-51
[28.]
S. Perea, J.L. Lopez-Ribot, W.R. Kirkpatrick, R.K. McAtee, R.A. Santillan, M. Martinez.
Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients.
Antimicrob Agents Chemother, 45 (2001), pp. 2676-2684
[29.]
D. Sanglard, F. Ischer, D. Calabrese, P.A. Majcherczyk, J. Bille.
The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents.
Antimicrob Agents Chemother, 43 (1999), pp. 2753-2765
[30.]
G. Ramage, S. Bachmann, T.F. Patterson, B.L. Wickes, J.L. Lopez-Ribot.
Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms.
J Antimicrob Chemother, 49 (2002), pp. 973-980
[31.]
M.D. Martins, M. Lozano-Chiu, J.H. Rex.
Declining rates of oropharyngeal candidiasis and carriage of Candida albicans associated with trends toward reduced rates of carriage of fluconazole-resistant C. albicans in human immunodeficiency virus-infected patients.
Clin Infect Dis, 27 (1998), pp. 1291-1294
[32.]
J.D. Sobel, S.E. Ohmit, P. Schuman, R.S. Klein, K. Mayer, A. Duerr.
The evolution of Candida species and fluconazole susceptibility among oral and vaginal isolates recovered from human immunodeficiency virus (HIV)- seropositive and at-risk HIV-seronegative women.
J Infect Dis, 183 (2000), pp. 286-293
[33.]
D. Sanglard, F.C. Odds.
Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences.
Lancet Infect Dis, 2 (2002), pp. 73-85
[34.]
M.E. Brandt, M.A. Pfaller, R.A. Hajjeh, R.J. Hamill, P.G. Pappas, A.L. Reingold.
Trends in antifungal drug susceptibility of Cryptococcus neoformans isolates in the United States: 1992 to 1994 and 1996 to 1998.
Antimicrob Agents Chemother, 45 (2001), pp. 3065-3069
[35.]
M.A. Pfaller, S.A. Messer, R.J. Hollis, R.N. Jones, G.V. Doern, M.E. Brandt.
Trends in species distribution and susceptibility to fluconazole among blood stream isolates of Candida species in the United States.
Diagn Microbiol Infect Dis, 33 (1999), pp. 217-222
[36.]
M.A. Pfaller, S.A. Messer, R.J. Hollis, R.N. Jones, G.V. Doern, M.E. Brandt.
In vitro susceptibilities of Candida bloodstream isolates to the new triazole antifungal agents BMS-207147, SCH 56592, and voriconazole.
Antimicrob Agents Chemother, 42 (1998), pp. 3242-3244
[37.]
S.T. Yildiran, M.A. Saracli, A.W. Fothergill, M.G. Rinaldi.
In vitro susceptibility of environmental Cryptococcus neoformans variety neoformans isolates from Turkey to six antifungal agents, including SCH56592 and voriconazole.
Eur J Clin Microbiol Infect Dis, 19 (2000), pp. 317-319
[38.]
T. Yamazumi, M.A. Pfaller, S.A. Messer, A. Houston, R.J. Hollis, R.N. Jones.
In vitro activities of ravuconazole (BMS-207147) against 541 clinical isolates of Cryptococcus neoformans.
Antimicrob Agents Chemother, 44 (2000), pp. 2883-2886
[39.]
K. Bartizal, C.J. Gill, G.K. Abruzzo, A.M. Flattery, L. Kong, P.M. Scott.
In vitro preclinical evaluation studies with the echinocandin antifungal MK-0991 (L-743,872.
Antimicrob Agents Chemother, 41 (1997), pp. 2326-2332
[40.]
H. Mikamo, Y. Sato, T. Tamaya.
In vitro antifungal activity of FK463, a new water-soluble echinocandin like lipopeptide.
J Antimicrob Chemother, 46 (2000), pp. 485-487
[41.]
M. Chavez, S. Bernal, A. Valverde, M.J. Gutierrez, G. Quindos, E.M. Mazuelos.
In vitro activity of voriconazole (UK-109,496), LY303366 and other antifungal agents against oral Candida spp. isolates from HIV-infected patients.
J Antimicrob Chemother, 44 (1999), pp. 697-700
[42.]
M.A. Pfaller, S.A. Messer, S. Coffman.
In vitro susceptibilities of clinical yeast isolates to a new echinocandin derivative, LY303366, and other antifungal agents.
Antimicrob Agents Chemother, 41 (1997), pp. 763-766
[43.]
S. Tawara, F. Ikeda, K. Maki, Y. Morishita, K. Otomo, N. Teratani.
In vitro activities of a new lipopeptide antifungal agent, FK463, against a variety of clinically important fungi.
Antimicrob Agents Chemother, 44 (2000), pp. 57-62
[44.]
A. Espinel-Ingroff.
Comparison of in vitro activities of the new triazole SCH56592 and the echinocandins MK-0991 (L-743,872) and LY303366 against opportunistic filamentous and dimorphic fungi and yeasts.
J Clin Microbiol, 36 (1998), pp. 2950-2956
Copyright © 2002. Elsevier España, S.L.. Todos los derechos reservados
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos