metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Cómo se integra el ADN proviral en el ADN de la célula del huésped y cómo se...
Información de la revista
Vol. 26. Núm. S12.
Raltegravir: el primer inhibidor de la integrasa del VIH
Páginas 11-16 (noviembre 2008)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 26. Núm. S12.
Raltegravir: el primer inhibidor de la integrasa del VIH
Páginas 11-16 (noviembre 2008)
Acceso a texto completo
Cómo se integra el ADN proviral en el ADN de la célula del huésped y cómo se puede inhibir el proceso
How proviral DNA is integrated into the host cell DNA and how this process can be inhibited
Visitas
8675
Gilles Mirambeau
Autor para correspondencia
gilles.mirambeau@free.fr

Correspondencia: Unitat de Recerca de la Sida. Fundació Clínic-IDIBAPS. Parc Científic de Barcelona. Universidad de Barcelona. Baldiri Reixach, 15-21. 08028 Barcelona. España.
Unitat de Recerca de la Sida. Fundació Clínic-IDIBAPS. Parc Científic de Barcelona. Universidad de Barcelona. Barcelona. España. UFR des Sciences de la Vie. Université Pierre et Marie Curie. Paris. Francia
Este artículo ha recibido
Información del artículo

El ciclo de replicación del virus de la inmunodeficiencia humana pasa por una etapa de integración de su ADN proviral dentro del ADN de la célula. Este proceso implica que la integrasa (IN), la enzima viral, se asocia a los extremos del ADN proviral para actuar en dos etapas. La primera fase que parece citoplásmica incumbe al «procesado 3’», donde la IN corta 2 nucleótidos en cada extremo 3’ de la doble hélice viral. La segunda fase que ocurre en el núcleo corresponde a la transferencia de hebra que la IN cataliza, combinando 2 roturas monocatenarias del ADN celular con la unión de cada extremo 3’ del ADN viral al extremo 5’ del ADN celular. A pesar de que esta actividad todavía no se entiende perfectamente y que la estructura de la integrasa no está resuelta en su forma activa, que supone un estado de tetrámero, se ha encontrado fármacos de la familia del ácido diacetónico como inhibidores muy potentes de la segunda etapa, la transferencia de hebra, que han llegado por medio de una serie de optimización al encuentro de una molécula muy eficaz clínicamente: el raltegravir. Una síntesis del conocimiento básico sobre la integrasa, su actuación y los modos de inhibición de esta enzima se presenta en este capítulo con la perspectiva actual del encuentro de la segunda generación de inhibidores de integrasa, teniendo en cuenta la aparición reducida pero real de resistencia al raltegravir.

Palabras clave:
integrasa
ADN
integracion acoplada
procesado 3’
transferencia de hebra
acido diacetonico

The HIV replication cycle passes through a stage of integrating proviral DNA into the cell's DNA. In this process, the viral enzyme, integrase, catalyses two reactions. The first reaction, which seems to occur in the cytoplasm, involves 3’-end processing, in which two nucleotides are removed from the 3’ ends of the viral DNA by integrase. The second reaction, which occurs in the nucleus, involves the strand transfer reaction, catalyzed by integrase, in which the recessed 3’ ends of the viral DNA are joined to the protruding 5’ ends in the target DNA. Although this activity has not yet been completely defined and the structure of the active form of integrase, probably a tetramer, has not been resolved, drugs of the diketoacid (DKA) family have been found. These drugs are highly potent inhibitors of the second phase, the strand transfer reaction. Through a series of optimizations, a highly effective molecule for clinical use, raltegravir, has been achieved. The present article provides a summary of basic knowledge on integrase, as well as the activity and the modes of inhibition of this enzyme. Also discussed is the reduced, but nevertheless real, development of resistance to raltegravir, requiring second-generation integrase inhibitors to be designed.

El Texto completo está disponible en PDF
Bibliografía
[1.]
S. Nisole, A. Saib.
Early steps of retrovirus replicative cycle.
Retrovirology, 1 (2004), pp. 9
[2.]
Y. Suzuki, R. Craigie.
The road to chromatin – nuclear entry of retroviruses.
Nat Rev Microbiol, 5 (2007), pp. 187-196
[3.]
G.J. Towers.
The control of viral infection by tripartite motif proteins and cyclophilin A.
Retrovirology, 4 (2007), pp. 40
[4.]
A. Ciuffi, F.D. Bushman.
Retroviral DNA integration: HIV and the role of LEDGF/p75.
Trends Genet, 22 (2006), pp. 388-395
[5.]
R.K. Holmes, M.H. Malim, K.N. Bishop.
APOBEC-mediated viral restriction: not simply editing?.
Trends Biochem Sci, 32 (2007), pp. 118-128
[6.]
Y. Pommier, A.A. Johnson, C. Marchand.
Integrase inhibitors to treat HIV/AIDS.
Nat Rev Drug Discov, 4 (2005), pp. 236-248
[7.]
A.M. Skalka, R.A. Katz.
Retroviral DNA integration and the DNA damage response.
Cell Death Differ, 12 (2005), pp. 971-978
[8.]
E.S. Svarovskaia, R. Barr, X. Zhang, G.C. Pais, C. Marchand, Y. Pommier, et al.
Azido-containing diketo acid derivatives inhibit human immunodeficiency virus type 1 integrase in vivo and influence the frequency of deletions at twolong-terminal-repeat-circle junctions.
J Virol, 78 (2004), pp. 3210-3222
[9.]
Y. Wu, J.W. Marsh.
Selective transcription and modulation of resting T cell activity by preintegrated HIV DNA.
Science, 293 (2001), pp. 1503-1506
[10.]
N. Nakajima, R. Lu, A. Engelman.
Human immunodeficiency virus type 1 replication in the absence of integrase-mediated dna recombination: definition of permissive and nonpermissive T-cell lines.
J Virol, 75 (2001), pp. 7944-7955
[11.]
A. Zamborlini, J. Lehmann-Che, E. Clave, M.L. Giron, J. Tobaly-Tapiero, P. Roingeard, et al.
Centrosomal pre-integration latency of HIV-1 in quiescent cells.
Retrovirology, 4 (2007), pp. 63
[12.]
R.A. Fouchier, M.H. Malim.
Nuclear import of human immunodeficiency virus type-1 preintegration complexes.
Adv Virus Res, 52 (1999), pp. 275-299
[13.]
A. Engelman, P. Cherepanov.
The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication.
PLoS Pathog, 4 (2008), pp. e1000046
[14.]
N. Vandegraaff, A. Engelman.
Molecular mechanisms of HIV integration and therapeutic intervention.
Expert Rev Mol Med, 9 (2007), pp. 1-19
[15.]
A. Mousnier, N. Kubat, A. Massias-Simon, E. Segeral, J.C. Rain, R. Benarous, et al.
Von Hippel Lindau binding protein 1-mediated degradation of integrase affects HIV-1 gene expression at a postintegration step.
Proc Natl Acad Sci U S A, 104 (2007), pp. 13615-13620
[16.]
S. Sinha, D.P. Grandgenett.
Recombinant human immunodeficiency virus type 1 integrase exhibits a capacity for full-site integration in vitro that is comparable to that of purified preintegration complexes from virus-infected cells.
[17.]
M. Li, M. Mizuuchi, T.R. Burke Jr, R. Craigie.
Retroviral DNA integration: reaction pathway and critical intermediates.
Embo J, 25 (2006), pp. 1295-1304
[18.]
S.A. Chow, K.A. Vincent, V. Ellison, P.O. Brown.
Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus.
Science, 255 (1992), pp. 723-726
[19.]
T.K. Chiu, D.R. Davies.
Structure and function of HIV-1 integrase.
Curr Top Med Chem, 4 (2004), pp. 965-977
[20.]
I.B. Dicker, H.K. Samanta, Z. Li, Y. Hong, Y. Tian, J. Banville, et al.
Changes to the HIV long terminal repeat and to HIV integrase differentially impact HIV integrase assembly, activity, and the binding of strand transfer inhibitors.
J Biol Chem, 282 (2007), pp. 31186-31196
[21.]
A.A. Johnson, W. Santos, G.C. Pais, C. Marchand, R. Amin, T.R. Burke Jr, et al.
Integration requires a specific interaction of the donor DNA terminal 5’-cytosine with glutamine 148 of the HIV-1 integrase flexible loop.
J Biol Chem, 281 (2006), pp. 461-467
[22.]
M.K. Lewinski, M. Yamashita, M. Emerman, A. Ciuffi, H. Marshall, G. Crawford, et al.
Retroviral DNA integration: viral and cellular determinants of target-site selection.
[23.]
J. Wielens, I.T. Crosby, D.K. Chalmers.
A three-dimensional model of the human immunodeficiency virus type 1 integration complex.
J Comput Aided Mol Des, 19 (2005), pp. 301-317
[24.]
G. Ren, K. Gao, F.D. Bushman, M. Yeager.
Single-particle image reconstruction of a tetramer of HIV integrase bound to DNA.
J Mol Biol, 366 (2007), pp. 286-294
[25.]
K.K. Pandey, S. Bera, J. Zahm, A. Vora, K. Stillmock, D. Hazuda, et al.
Inhibition of human immunodeficiency virus type 1 concerted integration by strand transfer inhibitors which recognize a transient structural intermediate.
J Virol, 81 (2007), pp. 12189-12199
[26.]
M.V. Nermut, A. Fassati.
Structural analyses of purified human immunodeficiency virus type 1 intracellular reverse transcription complexes.
J Virol, 77 (2003), pp. 8196-8206
[27.]
P. Cherepanov, A.L. Ambrosio, S. Rahman, T. Ellenberger, A. Engelman.
Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75.
Proc Natl Acad Sci U S A, 102 (2005), pp. 17308-17313
[28.]
E.A. Semenova, C. Marchand, Y. Pommier.
HIV-1 integrase inhibitors: update and perspectives.
Adv Pharmacol, 56 (2008), pp. 199-228
[29.]
D.J. Hazuda, P. Felock, M. Witmer, A. Wolfe, K. Stillmock, J.A. Grobler, et al.
Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells.
Science, 287 (2000), pp. 646-650
[30.]
A. Billich.
S-1360 Shionogi-GlaxoSmithKline.
Curr Opin Investig Drugs, 4 (2003), pp. 206-209
[31.]
A.S. Espeseth, P. Felock, A. Wolfe, M. Witmer, J. Grobler, N. Anthony, et al.
HIV-1 integrase inhibitors that compete with the target DNA substrate define a unique strand transfer conformation for integrase.
Proc Natl Acad Sci U S A, 97 (2000), pp. 11244-11249
[32.]
D.J. Hazuda, N.J. Anthony, R.P. Gomez, S.M. Jolly, J.S. Wai, L. Zhuang, et al.
A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase.
Proc Natl Acad Sci U S A, 101 (2004), pp. 11233-11238
[33.]
M.W. Embrey, J.S. Wai, T.W. Funk, C.F. Homnick, D.S. Perlow, S.D. Young, et al.
A series of 5-(5,6)-dihydrouracil substituted 8-hydroxy-[1,6]naphthyridine-7-carboxylic acid 4-fluorobenzylamide inhibitors of HIV-1 integrase and viral replication in cells.
Bioorg Med Chem Lett, 15 (2005), pp. 4550-4554
[34.]
M. Sato, T. Motomura, H. Aramaki, T. Matsuda, M. Yamashita, Y. Ito, et al.
Novel HIV-1 integrase inhibitors derived from quinolone antibiotics.
J Med Chem, 49 (2006), pp. 1506-1508
[35.]
Y. Goldgur, R. Craigie, G.H. Cohen, T. Fujiwara, T. Yoshinaga, T. Fujishita, et al.
Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: a platform for antiviral drug design.
Proc Natl Acad Sci U S A, 96 (1999), pp. 13040-13043
[36.]
R. Di Santo, R. Costi, A. Roux, M. Artico, A. Lavecchia, L. Marinelli, et al.
Novel bifunctional quinolonyl diketo acid derivatives as HIV-1 integrase inhibitors: design, synthesis, biological activities, and mechanism of action.
J Med Chem, 49 (2006), pp. 1939-1945
[37.]
S. Bonnenfant, C.M. Thomas, C. Vita, F. Subra, E. Deprez, F. Zouhiri, et al.
Styrylquinolines, integrase inhibitors acting prior to integration: a new mechanism of action for anti-integrase agents.
[38.]
A. Mousnier, H. Leh, J.F. Mouscadet, C. Dargemont.
Nuclear import of HIV-1 integrase is inhibited in vitro by styrylquinoline derivatives.
Mol Pharmacol, 66 (2004), pp. 783-788
[39.]
C. Pannecouque, W. Pluymers, B. Van Maele, V. Tetz, P. Cherepanov, E. De Clercq, et al.
New class of HIV integrase inhibitors that block viral replication in cell culture.
Curr Biol, 12 (2002), pp. 1169-1177
[40.]
A. Hombrouck, A. Hantson, B. Van Remoortel, M. Michiels, J. Vercammen, D. Rhodes, et al.
Selection of human immunodeficiency virus type 1 resistance against the pyranodipyrimidine V-165 points to a multimodal mechanism of action.
J Antimicrob Chemother, 59 (2007), pp. 1084-1095
[41.]
I. Malet, O. Delelis, M.A. Valantin, B. Montes, C. Soulie, M. Wirden, et al.
Mutations associated with failure of raltegravir treatment affect integrase sensitivity to the inhibitor in vitro.
Antimicrob Agents Chemother, 52 (2008), pp. 1351-1358
[42.]
K. Shimura, E. Kodama, Y. Sakagami, Y. Matsuzaki, W. Watanabe, K. Yamataka, et al.
Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137).
J Virol, 82 (2008), pp. 764-774
[43.]
A. Severino.
In-Silicio docking of HIV-1 integrase inhibitors reveals a novel drug. Type acting on a enzyme/DNA reaction intermediate.
Retrovirology, 4 (2007), pp. 21
[44.]
Z. Wang, E.M. Bennett, D.J. Wilson, C. Salomon, R. Vince.
Rationally designed dual inhibitors of HIV reverse transcriptase and integrase.
J Med Chem, 50 (2007), pp. 3416-3419
Copyright © 2008. Elsevier España S.L.. Todos los derechos reservados
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos