metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Conclusiones y perspectivas
Información de la revista
Vol. 26. Núm. S11.
Maraviroc, el primer antagonista de los receptores de VIH
Páginas 49-54 (octubre 2008)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 26. Núm. S11.
Maraviroc, el primer antagonista de los receptores de VIH
Páginas 49-54 (octubre 2008)
Acceso a texto completo
Conclusiones y perspectivas
Conclusions and perspectives
Visitas
2187
José Alcamí
Autor para correspondencia
ppalcami@isciii.es

Correspondencia: Unidad de Inmunopatología del Sida. Instituto de Salud Carlos III. Sinesio Delgado, 6. 28029 Madrid. España.
Unidad de Inmunopatología del Sida. Instituto de Salud Carlos III. Madrid. España
Este artículo ha recibido
Información del artículo

Se discuten los aspectos más destacados de maraviroc expuestos en esta monografía, las perspectivas de desarrollo y aplicación de este fármaco, así como las principales preguntas planteadas en su utilización.

Maraviroc es el primer antagonista de CCR5 aprobado para el tratamiento de la infección por el VIH. Su estructura imidazopiridina interactúa con CCR5 e induce una conformacion del correceptor que impide la unión de las glucoproteínas de la envuelta viral. Tiene una potente actividad antiviral y actúa sobre un amplio espectro de virus con afinidad por este receptor. Esta circunstancia obliga a realizar un test de tropismo previo al tratamiento para definir si el paciente es portador de variantes R5. Maraviroc está indicado en pacientes infectados por el VIH que han recibido tratamiento antirretroviral previo. Presenta una baja toxicidad y, según los datos preliminares, una alta barrera genética. El mecanismo de resistencia se relaciona con cambios en la región V3 que permiten al virus reconocer el correceptor CCR5 unido a la molécula de maraviroc. La causa principal de fallo terapéutico es la selección de cepas X4 preexistentes no detectadas por la prueba de referencia. Maraviroc puede asociarse con cualquier antirretroviral comercializado o en desarrollo clínico avanzado. Las indicaciones de maraviroc en fases tempranas de la infección no es recomendada en el momento actual y dependerá de la demostración de no inferioridad respecto a otros tratamientos o de un beneficio en otros aspectos patogénicos como la recuperación de linfocitos CD4 o la reducción de los reservorios virales.

Palabras clave:
CCR5
Agonista inverso
Resistencia
Tropismo viral

This monograph discusses most important aspects Maraviroc, the development and application perspectives of this drug, as well as main questions raised in its use.

Maraviroc is the first CCR5 antagonist approved for treating HIV infection. Its imidazopyridine structure interacts with CCR5 and induces a co-receptor conformation that prevents glycoproteins binding to the viral envelope. It has powerful antiviral activity and acts on a wide spectrum of viruses with affinity for this receptor. This situation means that a tropism test has to be done before treatment to define whether the patient is a carrier of R5 variants. Maraviroc is indicated in HIV infected patients who have received previous antiretroviral treatment. It has a low toxicity and, according to preliminary data, a high genetic barrier. The resistance mechanism is associated with changes in the V3 region which allow the virus to recognise the CCR5 co-receptor bound to the Maraviroc molecule. The main cause of treatment failure is the selection of pre-existing X4 strains not detected by the reference test. Maraviroc can be combined with any other antiretroviral on the market or in clinically advanced development. The indication of Maraviroc in the early phases of the infection is not currently recommended and will depend whether it is shown to be inferior when compared other treatments or a benefit in other pathogenic aspects, such as recovery of CD4 lymphocytes or a reduction in viral reservoirs.

Key words:
CCR5
Inverse agonist
Resistance
Viral tropism
El Texto completo está disponible en PDF
Bibliografía
[1.]
E.A. Berger, P.M. Murphy, J.M. Farber.
Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease.
Annu Rev Immunol, 17 (1999), pp. 657-700
[2.]
J.P. Moore, S.G. Kitchen, P. Pugach, J.A. Zack.
The CCR5 and CXCR4 coreceptors–Central to understanding the transmission and pathogenesis of human immunodeficiency virus type 1 infection.
AIDS Res Hum Retroviruses, 20 (2004), pp. 111-126
[3.]
P. Dorr, M. Westby, S. Dobbs, P. Griffin, B. Irvine, M. Macartney, et al.
Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity.
Antimicrob Agents Chemother, 49 (2005), pp. 4721-4732
[4.]
K. Maeda, D. Das, H. Ogata-Aoki, H. Nakata, T. Miyakawa, Y. Tojo, et al.
Structural and molecular interactions of CCR5 inhibitors with CCR5.
J Biol Chem, 281 (2006), pp. 12688-12698
[5.]
K. Maeda, H. Nakata, Y. Koh, T. Miyakawa, H. Ogata, Y. Takaoka, et al.
Spirodiketopiperazine-based CCR5 inhibitor which preserves CC-chemokine/CCR5 interactions and exerts potent activity against R5 human immunodeficiency virus type 1 in vitro.
[6.]
B. Lagane, S. Ballet, T. Planchenault, K. Balabanian, E. Le Poul, C. Blanpain, et al.
Mutation of the DRY motif reveals different structural requirements for the CC chemokine receptor 5-mediated signaling and receptor endocytosis.
Mol Pharmacol, 67 (2005), pp. 1966-1976
[7.]
D. Hardy, J. Reynes, I. Konourina, D. Wheeler, S. Moreno, E. Van der Ryst, et al.
Efficacy and safety of maraviroc plus optimized background therapy in treatment-experienced patients infected with CCR5-tropic HIV-1: 48-week combined analysis of the MOTIVATE studies.
15th Conference on Retroviruses and Opportunistic Infections,
[8.]
M. Saag, P. Ive, J. Heera, M. Tawadrous, E. DeJesus, N. Clumeck, et al.
A multicenter, randomized, double-blind, comparative trial of a novel CCR5 antagonist, maraviroc versus efavirenz, both in combination with combivir (zidovudine [ZDV]/lamivudine [3TC]), for the treatment of antiretroviral naive subjects infected with R5 HIV-1: week 48 results of the MERIT study.
4th IAS, (2007),
[9.]
J. Heera, M. Saag, P. Ive, J. Whitcomb, M. Lewis, L. McFadyen, et al.
Virological correlates associated with treatment failure at week 48 in the phase 3 study of maraviroc in treatment-naive patients.
15th Conference on Retroviruses and Opportunistic Infections,
[10.]
Z.L. Brumme, J. Goodrich, H.B. Mayer, C.J. Brumme, B.M. Henrick, B. Wynhoven, et al.
Molecular and clinical epidemiology of CXCR4-using HIV-1 in a large population of antiretroviral-naive individuals.
J Infect Dis, 192 (2005), pp. 466-474
[11.]
H. Mayer, E. Van der Ryst, M. Saag, B. Clotet, G. Fätkenheuer, N. Clumeck, et al.
Safety and efficacy of MARAVIROC, a novel CCR5 antagonist, when used in combination with optimized background therapy for the treatment of antiretroviral-experienced subjects infected with dual/mixed-tropic HIV-1: 24-week results of a phase 2b exploratory trial.
Sixteenth International AIDS Conference,
[12.]
G. Lehrman, I.B. Hogue, S. Palmer, C. Jennings, C.A. Spina, A. Wiegand, et al.
Depletion of latent HIV-1 infection in vivo: a proof-of-concept study.
[13.]
N.M. Archin, J.J. Eron, S. Palmer, A. Hartmann-Duff, J.A. Martinson, A. Wiegand, et al.
Valproic acid without intensified antiviral therapy has limited impact on persistent HIV infection of resting CD4+ T cells.
[14.]
M. Westby, C. Smith-Burchnell, J. Mori, M. Lewis, M. Mosley, M. Stockdale, et al.
Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitor-bound receptor for entry.
J Virol, 81 (2007), pp. 2359-2371
[15.]
L. Waters, S. Mandalia, P. Randell, A. Wildfire, B. Gazzard, G. Moyle.
The impact of HIV tropism on decreases in CD4 cell count, clinical progression, and subsequent response to a first antiretroviral therapy regimen.
Clin Infect Dis, 46 (2008), pp. 1617-1623
[16.]
M. Westby, M. Lewis, J. Whitcomb, M. Youle, A.L. Pozniak, I.T. James, et al.
Emergence of CXCR4-using human immunodeficiency virus type 1 (HIV-1) variants in a minority of HIV-1-infected patients following treatment with the CCR5 antagonist maraviroc is from a pretreatment CXCR4-using virus reservoir.
[17.]
A. Trkola, S.E. Kuhmann, J.M. Strizki, E. Maxwell, T. Ketas, T. Morgan, et al.
HIV-1 escape from a small molecule, CCR5-specific entry inhibitor does not involve CXCR4 use.
Proc Natl Acad Sci U S A, 99 (2002), pp. 395-400
[18.]
C. Pastore, A. Ramos, D.E. Mosier.
Intrinsic obstacles to human immunodeficiency virus type 1 coreceptor switching.
[19.]
M. Lewis, J. Mori, P. Simpson, J. Whitcomb, X. Li, D. Roberston, et al.
Changes in V3 loop sequence associated with failure of maraviroc treatment in patients enrolled in the MOTIVATE 1 and 2 trials.
15th CROI, (2008),
[20.]
J. Mori, M. Lewis, P. Simpson.
Characterization of maraviroc resistance in patients failing treatment with CCR5-tropic virus in MOTIVATE 1 and MOTIVATE 2 (24 week analysis).
6th European HIV Drug Resistance Workshop,
[21.]
C. Crabb.
GlaxoSmithKline ends aplaviroc trials.
[22.]
M. Samson, F. Libert, B.J. Doranz, J. Rucker, C. Liesnard, C.M. Farber, et al.
Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene.
Nature, 382 (1996), pp. 722-725
[23.]
F. Castellino, A.Y. Huang, G. Altan-Bonnet, S. Stoll, C. Scheinecker, R.N. Germain.
Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction.
Nature, 440 (2006), pp. 890-895
[24.]
W.G. Glass, D.H. McDermott, J.K. Lim, S. Lekhong, S.F. Yu, W.A. Frank, et al.
CCR5 deficiency increases risk of symptomatic West Nile virus infection.
J Exp Med, 203 (2006), pp. 35-40
[25.]
K. Maeda, D. Das, H. Ogata-Aoki, H. Nakata, T. Miyakawa, Y. Tojo, et al.
Structural and molecular interactions of CCR5 inhibitors with CCR5.
J Biol Chem, 281 (2006), pp. 12688-12698
[26.]
Celsentri® Ficha Técnica.
[27.]
J.M. Whitcomb, W. Huang, S. Fransen, K. Limoli, J. Toma, T. Wrin, et al.
Development and characterization of a novel single-cycle recombinant-virus assay to determine human immunodeficiency virus type 1 coreceptor tropism.
Antimicrob Agents Chemother, 51 (2007), pp. 566-575
[28.]
M.A’t. Jensen, A.B. Wout.
Predicting HIV-1 coreceptor usage with sequence analysis.
AIDS Rev, 5 (2003), pp. 104-112
[29.]
A.J. Low, W. Dong, D. Chan, T. Sing, R. Swanstrom, M. Jensen, et al.
Current V3 genotyping algorithms are inadequate for predicting X4 co-receptor usage in clinical isolates.
AIDS, F21 (2007), pp. F17-24
[30.]
K. Skrabal, A.J. Low, W. Dong, T. Sing, P.K. Cheung, F. Mammano, et al.
Determining human immunodeficiency virus coreceptor use in a clinical setting: degree of correlation between two phenotypic assays and a bioinformatic model.
J Clin Microbiol, 45 (2007), pp. 279-284
[31.]
R.L. Willey, T.S. Theodore, M.A. Martin.
Amino acid substitutions in the human immunodeficiency virus type 1 gp120 v3 loop that change viral tropism also alter physical and functional properties of the virion envelope.
J Virol, 68 (1994), pp. 4409-4419
[32.]
W. Huang, J. Toma, S. Fransen, E. Stawiski, J.D. Reeves, J.M. Whitcomb, et al.
Coreceptor tropism can be influenced by amino acid substitutions in the gp41 transmembrane subunit of human immunodeficiency virus type 1 envelope protein.
J Virol, (2008),
[33.]
M. Margulies, M. Egholm, W.E. Altman, S. Attiya, J.S. Bader, L.A. Bemben, et al.
Genome sequencing in microfabricated high-density picolitre reactors.
Nature, 437 (2005), pp. 376-380
[34.]
M.P. Daumer, R. Kaiser, R. Klein, T. Lengauer, B. Thiele, A. Thielen.
Inferring viral tropism from genotype with massive parallel sequencing: qualitative and quantitative analysis.
17th Workshop on HIV Resistance,
[35.]
N. González, M. Pérez-Olmeda, J. García-Pérez, E. Mateos, A. Cascajero, A. Álvarez, et al.
Evaluation of HIV-1 tropism using a new and sensitive sytem based on recombinant viruses.
17th Workshop on HIV Resistance,
[36.]
I. Trinh, D. Han, W. Huang, T. Wrin, J. Larson, E. Kiss, et al.
Technical validation of an enhanced sensitivity Trofile HIV coreceptor tropism assay for selecting patients for therapy with entry inhibitors targeting CCR5.
17th International HIV Drug Resistance Workshop,
[37.]
Z. Su, J.D. Reeves, A. Krambrink, E. Coaklwey, M. Hughes, C. Flexner, et al.
Response to vicriviroc in HIV-infected treatment-experienced individuals using an enhanced version of the Trofile HIV co-receptor tropism assays [Trofile (ES)]: reanalysis of ACTG 5211 results.
17th International HIV Drug Resistance Workshop,
[38.]
A.L. Brass, D.M. Dykxhoorn, Y. Benita, N. Yan, A. Engelman, R.J. Xavier, et al.
Identification of host proteins required for HIV infection through a functional genomic screen.
Science, 319 (2008), pp. 921-926
Copyright © 2008. Elsevier España S.L.. Todos los derechos reservados
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos