metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Lectura interpretada del antibiograma de enterobacterias
Información de la revista
Vol. 20. Núm. 5.
Páginas 225-234 (mayo 2002)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 20. Núm. 5.
Páginas 225-234 (mayo 2002)
Acceso a texto completo
Lectura interpretada del antibiograma de enterobacterias
Interpretive reading of the antibiogram of enterobacteria
Visitas
23573
Ferran Navarro Risueño1
Autor para correspondencia
fnavarror@hsp.santpau.es

Correspondencia: Dr. F. Navarro Risueño. Servicio de Microbiología. Hospital de Sant Pau. Avda. Padre Claret, 167. 08025 Barcelona.
, Elisenda Miró Cardona, Beatriz Mirelis Otero
Servicio de Microbiología. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona. España
Este artículo ha recibido
Información del artículo

A pesar de que la mayoría de los mecanismos de resistencia implicados en las enterobacterias se conocen con bastante detalle, quedan aún muchos aspectos por determinar, especialmente cuando se intenta predecir la respuesta clínica. El patrón de resistencia observado en el antibiograma de un microorganismo concreto debe ser la suma del patrón de resistencia natural característico de la especie más las resistencias adquiridas. El principal mecanismo de resistencia a los betalactámicos y aminoglicósidos en enterobacterias es el enzimático, donde cada enzima reconoce un/os determinados betalactámicos o aminoglicósidos, respectivamente. Ello, se traduce en un patrón de resistencia concreto que permite deducir la/las enzimas implicadas. Sin embargo la resistencia enzimática no es el único mecanismo y muy frecuentemente el patrón observado es multifactorial. La resistencia a las quinolonas se debe a mutaciones puntuales y secuenciales, que se pueden ir seleccionando con fluoroquinolonas inicialmente activas e incrementar escalonadamente su resistencia.

Palabras clave:
Enterobacterias
Determinación de la sensibilidad
Resistencia

Many of the resistance mechanisms of enterobacteria to antimicrobial agents are well understood; nevertheless several aspects remain unsolved, particularly with regard to prediction of clinical response. The resistance pattern observed in the antibiogram of a specific organism should be the sum of the natural resistance pattern, characteristic of the species, plus the acquired resistance. In enterobacteria the principal mechanism of resistance to beta lactams and aminoglycosides is enzyme production, Each enzyme recognizes one or more specific beta lactam or aminoglycoside, as a substrate. This translates as a specific resistance phenotype that allows one to infer the enzyme(s) implicated. Enzyme resistance is not, however, the only mechanism of resistance to these agents; often the pattern observed is multifactorial. Resistance to quinolones is due to point and sequence mutations which may be selected by initially active fluoroquinolones and cause a stepwise increase of resistance.

Key words:
Enterobacteria
Determination of sensitivity
Resistance
El Texto completo está disponible en PDF
Bibliografía
[1.]
P.A. Bradford.
Extended-spectrum β -lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat.
Clin Microbiol Rev, 14 (2001), pp. 933-951
[2.]
Cantón R. Lectura interpretada del antibiograma: ¿ejercicio intelectual o necesidad clínica? Enferm Infecc Microbiol Clin 2002 (en prensa)
[3.]
K.S. Thomson.
Controversies about extended-spectrum and AmpC beta-lactamases.
Emerg Infect Dis, 7 (2001), pp. 333-336
[4.]
National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Susceptibility Testing; Eleventh Informational Supplement. NCCLS Document M100-S11. Wayne, 2001
[5.]
Comité de l’Antibiogramme de la Société Francaise de Microbiologie. Communique 2000-2001. 2001. Disponible en: www.sfm.asso.fr/Sect4/com2001.pdf
[6.]
García Rodríguez JA, Cantón R, García Sánchez JE, Gómez-Lus ML, Martínez-Martínez L, Rodríguez-Avial C, et al. 11. Métodos básicos para el estudio de la sensibilidad a los antimicrobianos. En: Picazo JJ, ed. Procedimientos en Microbiología Clínica. Disponible en: http://www.seimc.org
[7.]
E. Miró, C. Alonso, F. Navarro, B. Mirelis, G. Prats.
Resistencia al imipenem en Enterobacter aerogenes.
Enferm Infecc Microbiol Clin, 13 (1995), pp. 278-282
[8.]
P.D. Stapleton, K.P. Shannon, G.L. French.
Carbapenem resistance in Escherichia coli associated with plasmid-determined CMY-4 β-lactamase production and loss of an outer membrane protein.
Antimicrob Agents Chemother, 43 (1999), pp. 1206-1210
[9.]
P.A. Bradford, C. Urban, N. Mariano, S.J. Projan, J.J. Rahal, K. Bush.
Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC beta-lactamase, and the loss of an outer membrane protein.
Antimicrob Agents Chemother, 41 (1997), pp. 563-569
[10.]
H. Nikaido.
Outer membrane barrier as a mechanism of antimicrobial resistance.
Antimicrob Agents Chemother, 33 (1989), pp. 1831-1836
[11.]
D.M. Livermore, T.G. Winstanley, K.P. Shannon.
Interpretative reading: Recognizing the unusual and inferring resistance mechanisms from resistance phenotypes.
J Antimicrob Chemother, 48 (2001), pp. 87-102
[12.]
D.M. Livermore.
β-lactamases in laboratory and clinical resistance.
Clin Microbiol Rev, 8 (1995), pp. 557-584
[13.]
K. Bush, G.A. Jacoby, A.A. Medeiros.
A functional classification scheme for β-lactamases and its correlation with molecular structure.
Antimicrob Agents Chemother, 39 (1995), pp. 1211-1233
[14.]
García Rodríguez JA, Cantón R, García Sánchez JE, Gómez-Lus ML, Martínez-Martínez L, Rodríguez-Avial C, et al. 12. Métodos especiales para el estudio de la sensibilidad a los antimicrobianos. En: Picazo JJ, ed. Procedimientos en Microbiología Clínica. Disponible en: http://www.seimc.org
[15.]
J.N. Pham, S.M. Bell, L. Martin, E. Carniel.
The β-lactamases and β-lactam antibiotic susceptibility of Yersinia enterocolitica.
J Antimicrob Chemother, 46 (2000), pp. 951-957
[16.]
B. Fournier, C.Y. Lu, P.H. Lagrange, R. Krishnamoorthy, A. Philippon.
Point mutation in the pribnow box, the molecular basis of β -lactamase overproduction in Klebsiella oxytoca.
Antimicrob Agents Chemother, 39 (1995), pp. 1365-1368
[17.]
E.C. Nelson, B.G. Elisha.
Molecular basis of AmpC hyperproduction in clinical isolates of Escherichia coli.
Antimicrob Agents Chemother, 43 (1999), pp. 957-959
[18.]
B. Wiedemann, H. Dietz, D. Pfeifle.
Induction of β-lactamase in Enterobacter cloacae.
Clin Infect Dis, 27 (1998), pp. 42-47
[19.]
E. Miró, M. Del Cuerpo, F. Navarro, M. Sabaté, B. Mirelis, G. Prats.
Emergence of clinical Escherichia coli isolates with decreased susceptibility to ceftazidime and synergic effect with co-amoxiclav due to SHV-1 hyperproduction.
J Antimicrob Chemother, 42 (1998), pp. 535-553
[20.]
Navarro F, Miro E. Update on CTX-M-type β-lactamases. Rev Med Microbiol 2002. En prensa
[21.]
E.E. Prinarakis, V. Miriagou, E. Tzelepi, M. Gazouli, L.S. Tzouvelekis.
Emergence of an inhibitor-resistant beta-lactamase (SHV-10) derived from an SHV-5 variant.
Antimicrob Agents Chemother, 41 (1997), pp. 838-840
[22.]
E.B. Chaïbi, D. Sirot, G. Paul, R. Labia.
Inhibitor-resistant TEM β-lactamase: Phenotypic, genetic and biochemical characteristics.
J Antimicrob Chemother, 43 (1999), pp. 447-458
[23.]
A. Philippon, G. Arlet, G.A. Jacoby.
Plasmid-determined AmpC-type β-lactamases Antimicrob Agents Chemother, 46 (2002), pp. 1-11
[24.]
D.M. Livermore.
Acquired carbapenemases.
J Antimicrob Chemother, 39 (1997), pp. 673-676
[25.]
G. Prats, E. Miro, B. Mirelis, L. Poirel, S. Bellais, P. Nordmann.
First isolation of carbapenen-hydrolyzing β-lactamases in Pseudomonas aeruginosa, in Spain.
Antimicrob Agents Chemother, 46 (2002), pp. 932-933
[26.]
J. Lemozy, R. Bismuth, P. Courvalin.
Enterobacteries et aminosides.
pp. 111-125
[27.]
K.J. Shaw, P.N. Rather, R.S. Hare, G.H. Miller.
Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes.
Microbiol Rev, 57 (1993), pp. 138-163
[28.]
Y.F. Chiew, S.F. Yeo, L.M.C. Hall, D.M. Livermore.
Can susceptibility to an antimicrobial be restored by halting its use? The case of streptomycin versus Enterobacteriaceae.
J Antimicrob Chemother, 41 (1998), pp. 247-251
[29.]
J.M. Blondeau.
A review of the comparative in-vitro activities of 12 antimicrobial agents, with a focus on five new “respiratory quinolones”.
J Antimicrob Chemother, 43 (1999), pp. 1-11
[30.]
D.C. Hooper.
Bacterial topoisomerases, anti-topoisomerases, and anti-topoisomerase resistance.
Clin Infect Dis, 27 (1998), pp. 54-63
[31.]
L. Martinez-Martinez, A. Pascual, G.A. Jacoby.
Quinolone resistance from a transferable plasmid.
[32.]
M. Oethinger, W.V. Kern, A.S. Jellen-Ritter, L.M. McMurry, S.B. Levy.
Ineffectiveness of topoisomerase mutations in mediating clinically significant fluoroquinolone resistance in Escherichia coli in the absence of the AcrAB efflux pump.
Antimicrob Agents Chemother, 44 (2000), pp. 10-13
[33.]
A.D.C. Fluit, M.R. Visser, F.J. Schmitz.
Molecular detection of antimicrobial resistance.
Clin Microbiol Rev, 14 (2001), pp. 836-871
[34.]
J. Vila, J. Ruiz, F. Marco, A. Barcelo, P.E. Goñi, E. Giralt, et al.
Association between double mutation in the gyrA gene of ciprofloxacin-resistant clinical isolates of Escherichia coli and MICs.
Antimicrob Agents Chemother, 38 (1994), pp. 2477-2479
[35.]
J. Wain, N.T. Hoa, N.T. Chinh, H. Vinh, M.J. Everett, T.S. Diep, et al.
Quinolone-resistant Salmonella typhi in Viet Nam: molecular basis of resistance and clinical response to treatment.
Clin Infect Dis, 25 (1997), pp. 1404-1410
[36.]
F.J. Vasallo, P. Martín Rabadán, L. Alcalá, J.M. Garcia-Lechuz, Rodríguez- Creixems, E. Bouza.
Failure of ciprofloxacin therapy for invasive nontyphoidal salmonellosis.
Clin Infect Dis, 26 (1998), pp. 535-536
[37.]
Sabate M, Miro E, Navarro F, Verges C, Aliaga R, Mirelis B, et al. β-lactamases involved in resistance to broad-spectrum cephalosporins in Escherichia coli and Klebsiella spp. clinical isolates between 1994-1996 in (Barcelona) Spain. J Antimicrob Chemother 2002. En prensa
[38.]
F. Navarro, E. Perez-Trallero, J.M. Marimon, R. Aliaga, M. Gomariz, B. Mirelis.
CMY-2-producing Salmonella enterica, Klebsiella pneumoniae, Klebsiella oxytoca, Proteus mirabilis and Escherichia coli strains isolated in Spain (October 1999-December 2000).
J Antimicrob Chemother, 48 (2001), pp. 383-389
Copyright © 2002. Elsevier España, S.L.. Todos los derechos reservados
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos