covid
Buscar en
Gaceta Médica de Bilbao
Toda la web
Inicio Gaceta Médica de Bilbao Conceptos generales sobre el metabolismo del hierro
Información de la revista
Vol. 99. Núm. 2.
Páginas 33-37 (enero 2002)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 99. Núm. 2.
Páginas 33-37 (enero 2002)
Acceso a texto completo
Conceptos generales sobre el metabolismo del hierro
General basis of iron metabolism
Visitas
14707
J.J. Alonso, A. Cánovas, R. De la Prieta, T. Pereira, C. Ruiz, C. Aguirre
Servicio de Medicina Interna y Cátedra de Medicina Interna. UPV/EHU. Hospital de Cruces. Barakaldo.
Este artículo ha recibido
Información del artículo
Resumen

La regulación del metabolismo del hierro, tanto en lo referido a la limitación de su absorción intestinal como a su distribución en diferentes células y compartimentos intracelulares, sigue escapando a nuestra comprensión, pero los estudios sobre este tema han aportado nuevas luces e incógnitas. Se han ido conociendo proteínas que participan en diferentes etapas del metabolismo férrico: integrinas, movilferrina y DMT-1 en la absorción intestinal; ferroportina y hefestina en la transmisión del hierro desde el enterocito a la transferrina circulante; receptor de transferrina para la captación celular de hierro; proteínas reguladoras del hierro (IRP) y elementos sensibles a hierro (IRE) para controlar la concentración intracelular de hierro metabólicamente activo. Los nuevos hallazgos tienen por el momento una repercusión limitada en la actividad clínica rutinaria, pero no pueden ser ignorados al afrontar todo lo relacionado con este tema.

Summary

Iron metabolism regulation as for the limitation of intestinal absortion and distribution to different cells and cellular compartments remains a mistery to us. However recent researchs on this issue provide both clarifying facts and new riddles to solve. New proteins taking part in different stages of iron metabolism have come into play: integrin, mobilferrin and DMT-1 in intestinal absortion; ferroportin and haephestin related to iron release to transferrin from the enterocyte; transferrin receptor for iron uptake by cells, and iron regulatory proteins (IRP) and iron responsive elements (IRE) in management of intracellular level of active iron. Despite its momentary limited repercusion in ordinary clinical labour these findings can never be ignored as far as iron related pathology is concerned

Laburpena

Burdinaren metabolismoaren erregulazioak, bai heste-xurgapenaren mugapenari dagokionez, bai zeluletan eta zelula-barneko konpartimentuetan banatzeari dagokionez, ezezagun samarra izaten jarraitzen badu ere, harekin lotutako hainbat aurkikuntza egin dira azkenaldian. Hala, burdinaren metabolismoaren etapetan parte hartzen duten proteina batzuk aurkitu dira: integrina, mobilferrina eta DMT-1, heste-xurgapenean; ferroportina eta hefestina, enterozitoaren eta zirkulazioan dagoen transferrinaren arteko burdina transmisioan; transferrina hartzailea, burdinaren atzitze zelularrerako; burdinaren proteina erregulatzaileak (IRP) eta burdinarekiko elementu sentikorrak (IRE), metabolikoki aktiboa den burdinaren zelula-barneko kontzentrazioa kontrolatzeko. Aurkikuntzez oraingoz eguneroko jarduera klinikoan eragin handiegirik izango ez badute ere, ezin dira bazter batean utzi eta kontuan hartzea merezi dute.

El Texto completo está disponible en PDF
Referencias bibliográficass
[1.]
Andrews N.C..
Disorders of iron metabolism.
NEJM, 341 (1999), pp. 1986-1995
[2.]
Hallberg L., Brune M., Rossander L..
Effect of ascorbic acid on iron absortion from differents types of meals. Studies with ascorbic-acid-rich foods and synthetic ascorbic acid given in differnt amounts in differents meals.
Hum Nutr Apll Nutr, 40 (1986), pp. 97
[3.]
Conrad M.E., Umbreit J.N..
A concise review: Iron absortion -the mucin- mobilferrin-integrin pathway. A competitive pathway for metal absortion.
Am J Hematol, 42 (1993), pp. 67
[4.]
Gunshin H., Mckenzie B., Bergter U.V., et al.
Cloning and characterization of a mammalian proton-coupled metal-ion transporter.
Nature, 388 (1997), pp. 482-488
[5.]
Cannone-Hergaux F., Gruenheid S., Ponka P., Gros P..
Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron.
Blood, 93 (1999), pp. 4406-4417
[6.]
Riedel H.D., Remus A.J., Fitscher B.A., Stremmel W..
Characterization and partial purification of a ferrireductase from human duodenal nicrovillus membranes.
Biochem J, 309 (1995), pp. 745-748
[7.]
Umbreit J.N., Conrad M.E., Moore E.G., Latour L.F..
Iron absortion and cellular transport: The mobilferrin/paraferritin paradigm.
Sem Hematol, 35 (1998), pp. 13-26
[8.]
Vulpe C.D., Kuo Y.M., Murphy T.L., et al.
Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse.
Nat Genet, 21 (1999), pp. 195-199
[9.]
Andrews N.C., Levy J.E..
Iron is hot: An update on the pathophysiology of hemochromatosis.
Blood, 92 (1998), pp. 1845
[10.]
Parkkila S., Waheed A., Britton R.S., et al.
Immunochemistry of HLA-H, the protein defective in patients with hereditary hemochromatosis, reveals unique pattern of expression in gastrointestinal tract.
Proc Natl Acad Sci USA, 94 (1997), pp. 2534-2539
[11.]
Lebron J.A., Bennet M.J., Vaughn D.E., et al.
Crystal structure of hemochromatosis protein HFE and characterization of its interaction with transferrin receptor.
Cell, 93 (1998), pp. 111-123
[12.]
Feder J.N., Penny D.M., Irrinky A., et al.
The hemochromatosis gene product complexes with transferrin receptor and lowers its affinity for ligand binding.
Proc Natl Acad Sci USA, 95 (1998), pp. 1472-1477
[13.]
Zoller H., Pietrangelo A., Vogel W., Weiss G..
Duodenal metal transporter (DMT-1, NRAMP-2) expression in patients with hereditary hemochromatosis.
Lancet, 353 (1999), pp. 2120-2123
[14.]
Finch C..
Regulators of iron balance in humans.
Blood, 84 (1994), pp. 1697-1702
[15.]
Conrad M.E., Umbreit J.N., Moore E.G..
Paraferritin: A large protein complex involved in inrganic iron transport contains integrin, mobilferrin and a flavin monooxytgenase with ferroreductase activity.
Blood, 86 (1995), pp. 1651
[16.]
Worwood M..
Overview of iron metabolism at a mollecular level.
J Intern Med, 226 (1989), pp. 381
[17.]
Finch C.A., Belloti V., Stray S., et al.
Plasma ferritin determination as a diagnostic tool.
West J Med, 145 (1986), pp. 657
[18.]
Brittenham G.M., et al.
Disorders of iron metabolism: Iron deficiency and overload.
Hematology Basic Principles and Practice, 2,
[19.]
Ponka P., Beaumont C., Richarson D.R..
Function and regulation of transferrin and ferritin.
Sem Hematol, 35 (1998), pp. 35-54
[20.]
Theil E.C..
The IRE (iron regulatory element) family: Structures which regulate RNAm translation or stability.
Biofactors, 4 (1993), pp. 87
[21.]
Lash A., Saleem A..
Iron metabolism and its regulation. A review.
Ann Clin Lab Sci, 25 (1995), pp. 20
[22.]
Dix D.J., Lin P.N., Kimata Y., et al.
The iron regulatory region of ferritin RNA is also a positive control element for iron-dependent translation.
Biochemistry, 31 (1992), pp. 2818
[23.]
Hartman K.R., Barker J.A..
Microcytic anemia with iron malabsortion: an inherited disorder of iron metabolism.
[24.]
American Academy of Pediatrics, Committee on Nutrition.
Iron fortification of infant formulas.
Pediatrics, 104 (1999), pp. 119-123
[25.]
Moyo V.M., Mandishona E., Hasstedt S.J., et al.
Evidence of genetic transmission in African iron overload.
Blood, 91 (1998), pp. 1076-1082
[26.]
Ferguson B.J., Skikne B.S., Simpson K.M., Baynes R.D., Cook J.D..
Serum transferrin receptor distinguishes the anemia of chronic disease from iron deficiency anemia.
J Lab Clin Med, 119 (1992), pp. 385-390
[27.]
Jurado R.L..
Iron, infections and anemia of inflammation.
Clin Infect Dis, 25 (1997), pp. 888-895
Copyright © 2002. Academia de Ciencias Médicas de Bilbao
Opciones de artículo