covid
Buscar en
Gaceta Médica de Bilbao
Toda la web
Inicio Gaceta Médica de Bilbao Expresión de proteínas relacionadas con resistencia a Múltiples Drogas (MDR-P...
Información de la revista
Vol. 103. Núm. 3.
Páginas 105-117 (enero 2005)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 103. Núm. 3.
Páginas 105-117 (enero 2005)
Acceso a texto completo
Expresión de proteínas relacionadas con resistencia a Múltiples Drogas (MDR-Proteínas) y resistencia a la quimioterapia en el cáncer de pulmón.
Visitas
3509
Alfredo Paredes-Lario1, Carlos Blanco-García2
1 Servicio de Oncología. Hospital Donostia. Donostia-San Sebastián. Gipuzkoa. España UE.
2 Departamento de Cirugía. Universidad del País Vasco. Donostia-San Sebastián. Gipuzkoa. España UE.
Miguel Echenique-Elizondo
Autor para correspondencia
gepecelm@sc.ehu.es

Correspondencia: Miguel Echenique-Elizondo. Departamento de Cirugía. Facultad de Medicina. UD San Sebastián. Universidad del País Vasco. Paseo Dr. Beguiristain, 105. 20014 Donostia-San Sebastián. Gipuzkoa. España UE. Tfno.+34- 943 017319. Fax +34-943 017 330
Este artículo ha recibido
Información del artículo
Resumen
Introducción

La reducción en la acumulación intracelular de los fármacos, es uno de los mecanismos más frecuentes de resistencia a los antineoplásicos. Las proteinas transportadoras de membrana juegan un papel esencial en éste fenómeno.

Material y Métodos

Se recogieron 147 muestras tumorales procedentes de 143 pacientes. De éstas, 35 eran broncoscópicas y 112 quirúrgicas. Resultaron válidas para el estudio 101 muestras correspondientes a 99 pacientes. Las muestras tumorales criocongeladas fueron sometidas a análisis inmunohistoquímico para la detección de las tres MDR-proteínas, Pgp, Mrp1 y Lrp

Resultados

No expresaban ninguna proteína, 16 casos. Expresaban una sola proteína, 32 casos: 3 Pgp, 11 Mrp1 y 18 Lrp=0. Expresaban dos proteínas, 34 casos: 24 Pgp y Lrp, 5 Mrp1 y Pgp, 5 Mrp1 y Lrp=0. Expresaban las tres proteínas, 17 casos.No hemos detectado relación significativa entre la edad y la expresión de Pgp (p=0.74), Mrp1 (p=0.95), o Lrp (p=0.26). No detectamos diferencias significativas entre sexos, tanto al analizar por el número (p=0.72), como por el tipo (p=0.39) de proteínas expresadas de forma simultánea.Tampoco detectamos diferencias significativas entre los diferentes estadios tumorales, tanto para el número (p=0.55), como para el tipo (p=0.21) de MDR-proteínas expresada. Tampoco detectamos diferencias significativas entre los diferentes grados histológicos, tanto para el número (p=0.59), como para el tipo (p=0.51) de MDR-proteínas expresadas simultáneamente esadas simultáneamente.

La tendencia de Pgp y Lrp a expresase asociadas ha resultado muy significativa (p<0.01), no ocurrió lo mismo para la sociación Pgp y Mrp1 (p=0.18) o Mrp1 y Lrp (p=0.26).

Conclusiones

El cáncer de pulmón expresa con frecuencia MDR-proteínas.De las tres MDR-proteínas estudiadas, Pgp Mrp1 y Lrp, es Lrp la más frecuentemente expresada. Los adenocarcinomas expresan menos Mrp1 que el resto de los tipos histológicos.Los carcinomas escamosos expresan menos Lrp que los adenocarcinomas y carcinomas indiferenciados de célula grande.Una proporción importante de pacientes expresan de forma simultánea más de una MDR-proteína.Los carcinomas escamosos, son los que con más frecuencia expresan Pgp, Mrp1 y Lrp de forma simultánea. Pgp se expresa fundamentalmente asociada a Lrp. La expresión de Pgp y el número de proteínas expresadas simultáneamente, puede afectar de forma negativa la respuesta a la quimioterapia.

Palabras clave:
MDR-proteinas
Cáncer
Pulmón
Summary
Background

Intracelular drug acumulation reduction plays an important role in resistente to chemotherapy in neoplasms. MDR-proteins regulate this cell activity.

Methods

-147 tumor simples were collected from 143 patients. 35 were done by bronchoscopy and 112 were surgical specimens. 101 samples from 99 patients were valid for the study. Cryopreservation and immunohystochemestry for detection of MDR-proteins:Pgp, Mrp1 y Lrp, was done by monoclocal murine Ab.

Results

16 cases did not expressed any protein.One protein was expressed in 32 cases: 3 Pgp, 11 Mrp1 and18 Lrp=0. Two proteins were expressed in 34 cases: 24 Pgp and Lrp, 5 Mrp1 y Pgp, 5 Mrp1 y Lrp=0. 17 cases expressed all three proteins, 17 casos. No diferences were observed in this expresión according to age: Pgp (p=0.74), Mrp1 (p=0.95), Lrp (p=0.26), sex:: numerical (p=0.72), type (p=0.39) of simultaneoulsy expressed proteins. Neither differences were observed according tumor: numerical (p=0.55), type(p=0.21)and pathology grade: both numerical (p=0.59) or type considered (p=0.51). Tendency of simultaneous expresión of Pgp and Lrp has been very significant a (p<0.01). The same was not observed in the association between Mrp1 and Lrp (p=0.26).

Conclussions

Lung cancer frequently express MDR-proteins. Lrp is the most frequent. Adenocarcinoma express less Mrp1 than the rest of patholy classes. Squamous carcinoma express less Lrp than adenocarcinoma and large-cell undifferenciatd carcinomas. More than two proteins are expressed simultaneously in significant number of cases. Squamous-cell carcinomas tend to express Pgp, Mrp1 and Lrp simultaneously. Pgp is expressed usually associated to Lrp. PgP expression and the number of MDR-proteins simultaneously may have influence on resistence to chemotherapy.

Key words:
MDR-proteins
Cancer
Lung
Laburpena
Sarrera

- Zelularen barru gertatzen den kimioterapikoa pilaketaren murriztasuna gaitasun handia du minbiziaren erresistentzia sor izan dadila erakusteko. MDR-proteinak gai honetan arakargarritasun berezia dute.

Metodoa

- 147 tumore zatiak 143 gaixoarengatik hartuak izan dira lan hau aurrera izana. 35 bronkoskopiaren bidez hatuak izan dira eta 112 ebakuntzaren bidezkoak. 101 zatiak, 99 gaixokoak baliozkoak izan dira ikerketa aurrera eraman izana. Kriopreserbazioa eta immunohistokimia- AK monoklonolaren bidez - MDR-proteinak azal izanal izateko erabili dira. Hiru proteinak nehurtuak izan dira: Pgp, Mrp1 eta Lrp.

Emaitzak

16 kasu ez zuten proteina bakarra era erakutsi. Proteina bat azaldu zen 32 kasuetan: 3 Pgp, 11 Mrp1 eta 18 Lrp=0. Bi proteinak azaldu ziren 34 kasutan: 24 Pgp eta Lrp, 5 Mrp1 eta Pgp, 5Mrp1 eta Lrp=0. 17 kasutan hiru proteinak azaltzen ziren. Ez dira ere ezberditasunik: numerikoa (p=0.72), mota (p=0.39) azaltzen diren proteina guzriak balorazia egin eta gero. Ez dira ere ezberditasunik sor tumorearen izentasuna kontutan harturik: numerikoa (p=0.55), mota (p=0.26) hartuak izan direnean.

Ondorioak

- Birikiko minbiziak maitz erakusten ditu MDR-proyeinaren azalpena, gehien bat Lrp. Adenokarzinomak gutxiago erakusten du Mrp1 beste tumore motare-kin konparatuz. Eskamoso motako minbiziak gutxiago azalten du Lrp adenokarzinoma eta gutxi diferentziatuak diren tumoreak baino. Bi baino proyein gehiago azaltzen dire kasu azalpena eta beste MDR-proteinarekin adoz duten azaltzeko erreztezuna kontutan harturik garrantzia izan daiteke birikiko minbiziaren dagoen erresistentzia kimioterapiarengan ondo uler izan dadila.

Giltza hitzak:
MDR-proteinak
Minbizia
Birika
El Texto completo está disponible en PDF
Bibliografia
[1.]
Beck W.T., Dalton W.S..
Mechanisms of Drug Resistance.
Cancer, Principles and Practice of Oncology, pp. 498-512
[2.]
Chu E., DeVita V.T..
Principles of Cancer Management: Chemotherapy. Cancer, Principles and Practice of Oncology.
6, pp. 289-386
[3.]
Goldie J.H., Coldman A.J..
A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate.
Cancer treat Rep, 63 (1979), pp. 1727-1731
[4.]
Skipper H.E., Simpson-Herren L..
Relationship Between Tumor Stem Cell Heterogeneity and Responsiveness to Chemotherapy.
Important Advances in Oncology, pp. 63-77
[5.]
Shepherd F.A., Carney D.N..
Treatment of NSCLC: Chemotherapy.
Textbook of Lung Cancer, pp. 213-242
[6.]
Nishio K., Nakamura T., Koh Y., et al.
Drug resístance in lung cancer.
Current Opinion in Oncology, 11 (1999), pp. 109-115
[7.]
Miller A.B., Hoogstraten B., Staquet M., Winkler A..
Reporting results of cancer treatment.
Cancer, 47 (1981), pp. 207-214
[8.]
Doyle L.A..
Mechanisms of Drug Resistance in Human Lung Cancer Cells.
Semin Oncol., 20 (1993), pp. 326-337
[9.]
Tamm I., Schriever F., Dörken B..
Apoptosis: implications of basic research for clinical oncology.
Lancet Oncol., 2 (2001), pp. 33-42
[10.]
Bradshaw D., Arceci R.J..
Clinical Relevance of Transmembrane Drug Efflux as a Mechanism of Multidrug Resistance.
J Clin Oncol., 16 (1998), pp. 3674-3690
[11.]
Gottesman M.M., Fojo T., Bates S.E..
Multidrug Resistance In Cancer : Role Of Atp-Dependent Transporters.
Nature Reviews Cancer, 2 (2002), pp. 48-58
[12.]
Morrow Ch.S., Cowan K.H..
Mechanisms of Antineoplastic Drug Resistance.
Cancer, Principles and Practice of Oncology, 4, pp. 340-348
[13.]
Tan B., Piwnica-Worms D., Ratner L..
Multidrug resistance transporters and modulation.
Current Opinion in Oncology, 12 (2000), pp. 450-458
[14.]
Ishikawa T., Ali-Osman F..
Glutathione-Associated Cis-Diammine-Dicloroplatinum (II) Metabolism And ATP-Depedent Efflux From Leukemia Cells.
J Biol Chem., 268 (1993), pp. 20116-20125
[15.]
Plasencia C., Tarón M., Abad A., et al.
Genes de quimiorresistencia.
Manual de Oncología Clínica y Molecular, pp. 145-159
[16.]
Dano K..
Active outward transport of daunomycin in resistant Ehrlich ascitis tumor cells.
Biochim Biophys Acta, 323 (1973), pp. 466-483
[17.]
Dalton W.S..
Overcoming the Multidrug-Resistant Phenotype.
Cancer, Principles and Practice of Oncology, pp. 2655-2666
[18.]
Borst P., Evers R., Kool M., et al.
A Family of Drug Transporters: the Multidrug Resistance-Associated Proteins.
J Natl Cancer Inst, 92 (2000), pp. 1295-1302
[19.]
Jedlitschky G., Leier I., Buchholz U., et al.
ATP-dependent transport of glutathione S-conjugates by the multidrug resistance-associated protein.
Cancer Res., 54 (1994), pp. 4833-4836
[20.]
Rappa G., Loico A., Flavell R., et al.
Evidence that the multidrug resitance protein (MRP) functions as a co-transporter of glutathione and natural product toxins.
Cancer Res., 57 (1997), pp. 5232-5237
[21.]
Carney D.N., Shepherd F.A..
Treatment of SCLC: Chemotherapy.
Textbook of Lung Cancer, pp. 261-272
[22.]
Scheper R.J., Broxterman H.J., Scheffer G.L., et al.
Overexpression of a Mr 110.000 Vesicular Protein in Non-P-Glycoprotein-Mediated Multidrug Resistance.
Cancer Res., 53 (1993), pp. 1475-1479
[23.]
Slovak M.L., Pelkey Ho J., Cole S.P.C., et al.
The LRP gene encoding a major vault protein associated with drug resistance maps proximal to MRP on cromosoma 16 : Evidence that chromosoma breakage plays a key role in MRP or LRP gene amplification.
Cancer Res., 55 (1995), pp. 4214-4219
[24.]
Scheffer G.L., Wijngaard P.L.J., Flens M.J., Izquierdo M.A., et al.
The drug resistance-related protein LRP is the human major vault protein.
Nature Med., 1 (1995), pp. 578-582
[25.]
Kedersha N.L., Rome L.H..
Isolation and Characterization of a Novel Ribonucleoprotein Particle: Large Structures Contain a Single Species of Small RNA.
J Cell Biol., 103 (1986), pp. 699-709
[26.]
Boyle P., Gandini S., Gray N..
Epidemiology of lung cancer: A century of great success and ignominious failure.
Textbook of Lung Cancer, pp. 13-25
[27.]
Beer T.W., Rowlands D.C., Crocker J..
Detection of the multidrug resistance marker P-glycoprotein by immunohistochemistry in malignant lung tumors.
Thorax, 51 (1996), pp. 526-529
[28.]
Simon M.F., Schindler M..
Cell biological mechanisms of multidrug resistance in tumors.
Proc. Natl. Acad. Sci. USA, 91 (1994), pp. 3497-3504
[29.]
Godstein L.J..
MDR1 Gene Expression in Solid Tumours.
Eur J Cancer, 32A (1996), pp. 1039-1050
[30.]
Radosevich J.A., Robinson P.G., Rittmann-Grauer L.S., et al.
Inmunohistochemical analysis of pulmonary and pleural tumors with the monoclonal antibody HYB-612 directed againts the multidrug-resistance (MDR-1) gene product P-glycoprotein.
Tumor Biol., 10 (1989), pp. 252-257
[31.]
Scagliotti G.V., Novello S., Selvaggi G..
Multidrug resistance in non-small-cell lung cancer.
Annals of Oncology, 10 (1999), pp. S83-S86
[32.]
Choi J.H., Lim H.Y., Joo H.J., et al.
Expression of multidrug resistance-associated protein 1, P-glycoprotein, and thymidylate synthase in gastric cancer patients treated with 5-fluorouracil and doxorubicin-based adyuvant chemotherapy after curative resection.
Br J Cancer, 86 (2002), pp. 1578-1585
[33.]
Zhou J., Higashi K., Ueda Y., et al.
Expression of multidrug resistance protein and messenger RNA correlate with (99m)Tc-MIBI imaging in patients with lung cancer.
J Nucl Med., 42 (2001), pp. 1476-1483
[34.]
Volm M., Mattern J., Samsel B..
Overexpression of P-glycoprotein and glutathione S-transferase-pi in resistant non-small-cell lung carcinomas of smokers.
Br J Cancer, 64 (1991), pp. 700-704
[35.]
Segawa Y., Ohnoshi T., Hiraki S., et al.
Immunohistochemical Detection of P-glycoprotein and Carcinoembryonic Antigen in Small Cell Lung Cancer: With Reference to Predictability of Response to Chemotherapy.
Acta Med Okayama, 47 (1993), pp. 181-189
[36.]
Hsia T.C., Lin C.C., Wang J.J., et al.
Relationship Between Chemotherapy Response of Small Cell Lung Cancer and P-glycoprotein or Multidrug Resistance-Related Protein Expression.
Lung, 180 (2002), pp. 173-179
[37.]
Oguri T., Isobe T., Fujitaka K., et al.
Association between expression of the MRP3 gene and exposure to platinum drugs in lung cancer.
Int J Cancer, 93 (2001), pp. 584-589
[38.]
Thomas H., Coley H.M..
Overcoming Multidrug Resistance in Cancer: An Update on the Clinical Strategy of Inhibiting P-Glycoprotein.
Cancer control., 10 (2003), pp. 159-165
[39.]
Bates S.E., Chen C., Robey R., et al.
Reversal of multidrug resistance: lessons from clinical oncology.
Novartis Foundation Symposium, 243 (2002), pp. 83-102
[40.]
Ota E., Abe Y., Oshika Y., et al.
Expression of the multidrug resistance-associated protein (MRP) gene in non-small-cell lung cancer.
Br J Cancer, 72 (1995), pp. 550-554
[41.]
Pennock G.D., Dalton W.S., Roeske W.R., et al.
Systemic toxic effects associated with high dose verapamil infusion and chemotherapy administration.
JNCI, 83 (1991), pp. 105-110
[42.]
Oshika Y., Nakamura M., Tokunaga T., et al.
Multidrug Resistance-Associated Protein and Mutant p53 Protein Expression in Non-Small Cell Lung Cancer.
Mod Pathol., 11 (1998), pp. 1059-1063
[43.]
Lu M., Wang J., Yi X..
Clinical significance of the expression of lung resistance protein in non-small cell lung cancecinomas.
Zhonghua Jie He He Hu Xi Za Zhi, 24 (2001), pp. 458-460
[44.]
Harada T., Ogura S., Yamakazi K., et al.
Predictive value of expression of P53, Bcl-2 and lung resistance-related protein for response to chemotherapy in non-small cell lung cancers.
Cancer Science, 94 (2003), pp. 394-399
[45.]
Lai S-L, Goldstein L.J., Gottesman M.M., et al.
MDR1 Gene Expression in Lung Cancer.
JNCI, 81 (1989), pp. 1144-1150
[46.]
Oka M., Fukuda M., Sakamoto A., et al.
The clinical role of MDR1 gene expression in human lung cancer: Anticancer.
Res., 17 (1997), pp. 721-724
[47.]
Oberli-Schrammli A.E., Joncourt F., Stadler M., et al.
Parallel assessment of glutathione-based detoxifying enzymes, O6-alkylguanine-DNA alkyltrans-ferase and P-glycoprotein as indicators of drug resistance in tumor and normal lung of patients with lung cancer.
Int J Cancer, 59 (1994), pp. 629-636
[48.]
Kawasaki M., Nakanishi Y., Kuwano K., et al.
Inmunohistochemically Detected p53 and P-glycoprotein Predict the Response to Chemotherapy in Lung Cancer.
Eur J Cancer, 34 (1998), pp. 1352-1357
[49.]
Dingemans A.C., van Ark-Otte J., Span S., et al.
Topoisomerase IIalpha and other drug resistance markers in advanced non-small cell lung cancer.
Lung Cancer, 32 (2001), pp. 117-128
Copyright © 2006. Academia de Ciencias Médicas de Bilbao
Descargar PDF
Opciones de artículo