covid
Buscar en
Gaceta Médica de Bilbao
Toda la web
Inicio Gaceta Médica de Bilbao Expresión de Proteínas Relacionadas con Resistencia a Múltiples Drogas (MDR-P...
Información de la revista
Vol. 103. Núm. 4.
Páginas 163-175 (enero 2005)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 103. Núm. 4.
Páginas 163-175 (enero 2005)
Acceso a texto completo
Expresión de Proteínas Relacionadas con Resistencia a Múltiples Drogas (MDR-Proteínas) en tumores sólidos
Expression of proteins related to multiple drugs (MDR-Proteins) in solid tumours
Visitas
2545
A. Paredes-Lario1, J.L. Blanco-Garda2, M. Echenique-Elizondo3,
Autor para correspondencia
gepecelm@sc.ehu.es

Correspondencia: Miguel Echenique-Elizondo. Universidad del País Vasco. Facultad de Medicina. Unidad Docente de Medicina de San Sebastián. Paseo Dr. Beguiristain, 105. Donostia-San Sebastián. Euskadi. España UE. Tfno. 943 462 890. Fax 943 468 385
1 Hospital Donostia. Departamento de Oncología. Donostia-San Sebastián. Euskadi. España UE.
2 Hospital Donostia. Departamento de Radioterapia. Donostia-San Sebastián. Euskadi. España UE.
3 Universidad del País Vasco. Departamento de Cirugía. Donostia-San Sebastián. Euskadi. España UE.
Este artículo ha recibido
Información del artículo
Resumen

El número de líneas de investigation sobre el cáncer es abrumador. Muchas de ellas se basan en la búsqueda de nuevos tratamientos. Otras, no menos importantes, intentan averiguar el porqué, a diferencia de bastantes tumores hematológicos como leucemias y linfomas, la mayoria de tumores sólidos, no pueden ser curados con quimioterápia.

Sin duda, las cáulal de que una cálula tumoral sea resistente a la quimioterapia son muchas y de variada naturaleza. El motivo del presente trabajo es el de realizar una revisión y puesta al día de una de estas posibles causas, en concreto, el de la expresion de proteínas relacionadas con la resistencia a múltiples drogas.

Palabras clave:
Quimioterápia
tumores
sólidos
RMD-proteinas
Summary

Research lines on cancer are oppressing in number. Many of them are based on the search of new treatment approaches. Other, not less important, try to ascertain the reason, as opposed to enough heamathological neoplasm as leukemias and lymphomas, the majority of solid tumors, cannot be cured with chemotherapy. Without doubt, the causes that a tumoral cell can be resistant to chemotherapy are many and of various nature. The motive of the present work is that of carrying out a review and update of one of these possible causes, in concrete, that of the expresion of proteins related to the resistance to multiple drugs -MDR proteins-.

Key words:
chemotherapy
Neoplasms
solid
MDR-proteins
Laburpena

Minbiziari buruz lantzen ari diren ikerketa ildoen kopurua egundokoa da. Ikerketa ildo horietako askoren xedea tratamendu berriak bilatzea da. Baina garrantzi handiko ikerketa ildoa da, halaber, tumor solido gehienak kimioterapiaren bidez zergatik ezin senda daitezkeen azaltzeko helburua duena; alegia kimioterapiak zergatik ez dituen sendatzen tumor solidoak, leuzemia eta linfomen moduko tumor hematologiko asko bezala.

Zalantzarik gabe, arrazoi askoren eta askotarikoen ondorioa izan daiteke tumor zelula batek kimioterapiarekiko erresistentzia izatea. Eta honako lan honen xedea arrazoi posible horietako bat aztertzea da, hain zuzen ere: droga anizkunekiko erresistentzia duten proteinen adierazpena aztertzea.

Hitz giltzarriak:
Kimioterapia
Tumorrak
Solidoak
RMD-proteinak
El Texto completo está disponible en PDF
References
[1.]
Beck W.T., Dalton W.S..
Mechanisms of Drug Resistance.
Cancer, Principles and Practice of Oncology, 5, pp. 498-512
[2.]
Chu E., DeVita V.T..
Principles of Cancer Management: Chemotherapy.
Cancer, Principles and Practice of Oncology, 6, pp. 289-386
[3.]
Skipper H.E., Schabel F.M., Wilcox W.S..
Experimental evaluation of potential anticancer agents XII: on the criteria and kinetics associated With “curability” of experimental leukemia.
Cancer Chem Rep, 35 (1964), pp. I
[4.]
Goldie J.H., Coldman A.J..
A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate.
Cancer treat Rep, 63 (1979), pp. 1727-1731
[5.]
Skipper H.E., Simpson-Herren L..
Relationship Between Tumor Stem Cell Heterogeneity and Responsiveness to Chemotherapy.
Important Advances in Oncology, pp. 63-77
[6.]
Nishio K., Nakamura T., Koh Y., et al.
Drug resistance in lung cancer.
Current Opinion in Oncology, 11 (1999), pp. 109-115
[7.]
Miller A.B., Hoogstraten B., Staquet M., Winkler A..
Reporting results of cancer treatment.
Cancer, 47 (1981), pp. 207-214
[8.]
Carney D.N., Shepherd F.A..
Treatment of SCLC: Chemotherapy.
Textbook of Lung Cancer, pp. 261-272
[9.]
Shepherd F.A., Carney D.N..
Treatment of NSCLC: Chemotherapy.
Textbook of Lung Cancer, pp. 213-242
[10.]
Doyle L.A..
Mechanisms of Drug Resistance in Human Lung Cancer Cells.
Semin Oncol., 20 (1993), pp. 326-337
[11.]
Lehnert M..
Clinical Multidrug Resistance in Cancer: A Multifactorial Problem.
Eur J Cancer, 32A (1996), pp. 912-920
[12.]
Koomagi R., Mattern J., Volm M..
Glucose-related protein (GRP78) and its relationship to the drug-resistance proteins P170, GST-pi, LRP56 and angio-genesis in non-small cell lung carcinomas.
Anticancer Res., 19 (1999), pp. 4333-4336
[13.]
Bradshaw D., Arceci R.J..
Clinical Relevance of Transmembrane Drug Efflux as a Mechanism of Multidrug Resistance.
J Clin Oncol., 16 (1998), pp. 3674-3690
[14.]
Duchesne M.G..
Fundamental bases of combined therapy in lung cancer: cell resitance to chemotherapy and radiotherapy.
Lung Cancer, 10 (1994), pp. S67-S72
[15.]
Dalton W.S..
Overcoming the Multidrug-Resistant Phenotype.
Cancer, Principles and Practice of Oncology, pp. 2655-2666
[16.]
Simon M.F., Schindler M..
Cell biological mechanisms of multidrug resistance in tumors.
Proc. Natl. Acad. Sci. USA, 91 (1994), pp. 3497-3504
[17.]
Tan B., Piwnica-Worms D., Ratner L..
Multidrug resistance transporters and modulation.
Current Opinion in Oncology, 12 (2000), pp. 450-458
[18.]
Tamm I., Schriever F., Dörken B..
Apoptosis: implications of basic research for clinical oncology.
Lancet Oncol., 2 (2001), pp. 33-42
[19.]
Morrow C.h.S., Cowan K.H..
Mechanisms of Antineoplastic Drug Resistance.
Cancer, Principles and Practice of Oncology, 4, pp. 340-348
[20.]
Ishikawa T., Ali-Osman F..
Glutathione-Associated Cis-Diammine-Dicloroplatinum (II) Metabolism And ATP-Depedent Efflux From Leukemia Cells.
J Biol Chem., 268 (1993), pp. 20116-20125
[21.]
Borst P., Evers R., Kool M., et al.
A Family of Drug Transporters: the Multidrug Resistance-Associated Proteins.
J Natl Cancer Inst, 92 (2000), pp. 1295-1302
[22.]
Volm M., Mattern J., Samsel B..
Overexpression of P-glycoprotein and glutathione S-transferase-pi in resistant non-small-cell lung carcinomas of smokers.
Br J Cancer, 64 (1991), pp. 700-704
[23.]
Kreisholt J., Sorensen M., Jensen P.B., et al.
Inmunohistochemical detection of DNA topoisomerasa IIalpha, P-glycoprotein and multidrug resistance protein (MRP) in small-cell and non-small-cell lung cancer.
Br J Cancer, 77 (1998), pp. 1469-1473
[24.]
Plasencia C., Tarón M., Abad A., et al.
Genes de quimiorresistencia.
Manual de Oncologia Clinica y Molecular, pp. 145-159
[25.]
Scagliotti G.V., Novello S., Selvaggi G..
Multidrug resistance in non-small-cell lung cancer.
Annals of Oncology, 10 (1999), pp. 83-86
[26.]
Drake F.h., Hofmann G.A., Bartus H.F., et al.
Bichemical and Pharmacological properties of p170 and p180 forms of topoisomerase II.
Biochemistry, 28 (1989), pp. 8154-8160
[27.]
Stewart C.F., Ratain M.J..
Topoisomerase Interactive Agents.
Cancer, Principles and Practice of Oncology, pp. 415-431
[28.]
Giaccone G., van Ark-Otte J., Scagliotti G., et al.
Differential expression of DNA topoisomerases in non-small-cell lung cancer and normal lung.
Bichim Biophys Acta, 1264 (1995), pp. 337-346
[29.]
Dingemans A.C., van Ark-Otte J., Span S., et al.
Topoisomerase IIalpha and other drug resistance markers in advanced non-small cell lung cancer.
Lung Cancer, 32 (2001), pp. 117-128
[30.]
Rosell R., Monzo M., Alberola V., et al.
Determinants of Response and Resístance to Cytotoxics.
Semin Oncol., 29 (2002), pp. 110-118
[31.]
Yang H.H., Ma M.H., Vescio R.A., et al.
Overcoming Drug Resistance In Multiple Myeloma: The Emergence Of Therapeutic Approaches To Induce Apoptosis.
J Clin Oncol., 21 (2003), pp. 4239-4247
[32.]
Leonard C.J., Canman C.E., Kastan M.B..
The role of p53 in cell-cycle control and apoptosis: implications for cancer.
Important advances in oncology 1995, pp. 33
[33.]
Marie J.P..
Drug resistance in hematologic malignances.
Current Opinion in Oncology, 13 (2001), pp. 463-469
[34.]
Chin K.V., Ueda K., Pastan I., et al.
Modulation of activity of the promoter of the human MDR1 gene by Ras and p53.
[35.]
Harada T., Ogura S., Yamakazi K., et al.
Predictive value of expression of P53, Bcl-2 and lung resistance-related protein for response to chemotherapy in non-small cell lung cancers.
Cancer Science, 94 (2003), pp. 394-399
[36.]
Kawasaki M., Nakanishi Y., Kuwano K., et al.
Inmunohistochemically Detected p53 and P-glycoprotein Predict the Response to Chemotherapy in Lung Cancer.
Eur J Cancer, 34 (1998), pp. 1352-1357
[37.]
Galimberti S., Marchetti A., Buttitta F., et al.
Multidrug resistance related genes and p53 expression in human non small cell lung cancer.
Anticancer Res., 18 (1998), pp. 2973-2976
[38.]
Schiller J.H., Adak S., Feins R.H., et al.
Lack of Prognostic Significance of P53 and K-ras Mutations in Primary Resected Non-Small-Cell lung Cancer on E4592: A Laboratory Ancillary Study on an Eastern Cooperative Oncology Group Prospective Randomized Trial Of Postoperative Adjuvant Therapy.
J Clin Oncol., 19 (2001), pp. 448-457
[39.]
Johnson E.A., Klimstra D.S., Herndon J.E. 2nd, et al.
Aberrant p53 staining does not predict cisplatin resistance in locally advanced non-samall cell lung cancer.
Cancer Invest., 20 (2002), pp. 686-692
[40.]
Wang Q., Beck W.T..
Transcriptional suppression of multidrug resistance-associated protein (MRP) gene expression by wild- type p53.
Cancer Res., 58 (1998), pp. 5762-5769
[41.]
Smyth M., krasovskis E., Sutton V., et al.
The drug efflux protein, P-glyco-protein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis.
Proc Natl Acad Sci USA, 95 (1988), pp. 7024-7029
[42.]
Solary E., Droin N., Bettaieb A., et al.
Positive and negative regulation of apoptotic pathways by cytotoxic agents in hematologycal malignances.
Leukemia, 14 (2000), pp. 1833-1849
[43.]
Gottesman M.M., Fojo T., Bates S.E..
Multidrug Resistance In Cancer : Role Of Atp-Dependent Transporters.
Nature Reviews Cancer, 2 (2002), pp. 48-58
[44.]
Dano K..
Active outward transport of daunomycin in resistant Ehrlich ascitis tumor cells.
Biochim Biophys Acta, 323 (1973), pp. 466-483
[45.]
Juliano R.L., Ling V..
A Surface Glycoprotein Modulating Drug Permeability In Chinese Hamster Ovary Cell Mutants.
Biochim Biophys Acta, 455 (1976), pp. 152-162
[46.]
Kartner N., Riordan J.R., Ling V..
Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines.
Science, 221 (1983), pp. 1285-1288
[47.]
Cole S.P.C., Bhardwaj G., Gerlach J.H., et al.
Overexpression of a Transporter Gene in a Multidrug-Resistant Human Lung Cancer Cell Line.
Science, 258 (1992), pp. 1650-1654
[48.]
Cordón-Cardo C., O'Brian J.P..
El Fenotipo de Resistencia a Multiples Farmacos en el Cáncer Humano.
Avances en Oncologia 1991 (Edición espa-fiola), pp. 35-55
[49.]
Goldstein L.J., Galski H., Fojo A., et al.
Expression of a Multidrug Resistance Gene in Human Cancers.
JNCI, 81 (1989), pp. 116-124
[50.]
Zaman GJR, Flens MJ, Van Leusden MR, et al.
The Human Multidrug Resistance-associated Protein MRP is a Plasma Membrane Drug-Efflux Pump.
Proc Natl Acad Sci USA, 91 (1994), pp. 8822-8826
[51.]
Koomagi R., Stammler G., Manegold C., et al.
Expression of resistance-related proteins in tumoral and peritumoral tissues of patients with lung cancer.
Cancer Lett., 110 (1996), pp. 129-136
[52.]
Kitazono M., Sumizawa T., Takebayashi Y., et al.
Multidrug resistance and the lung resistance-related protein in human colon carcinoma SW-620 cells.
J Natl Cancer Inst, 91 (1999), pp. 1647-1653
[53.]
Scheffer G.L., Wijngaard P.L.J., Flens M.J., Izquierdo M.A., et al.
The drug resistance-related protein LRP is the human major vault protein.
Nature Med., 1 (1995), pp. 578-582
[54.]
Pallis M., Russell N..
P-glycoprotein plays a drug-efflux-independent role in augmenting cell survival in acute myeloblastic leukemia and is associated with modulation of a sphingomyelin-ceramide apoptotic pathway.
Blood, 95 (2000), pp. 2897-2904
[55.]
Lincke C.R., Smitt J.J., van der Velde-Koerts T., et al.
Structure Of The Human MDR3 Gene And Physical Mapping Of The Human MDR Locus.
J Biol Chem., 266 (1991), pp. 5303-5310
[56.]
de Vree J.M., Jacquemin E., Sturm E., et al.
Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis.
Proc Natl Acad Sci USA, 95 (1998), pp. 282-287
[57.]
Scheffer G.L., Pijnenborg ACLM, Smit E.F., et al.
Multidrug resistance related molecules in human and murine lung.
J Clin Pathol., 55 (2002), pp. 332-339
[58.]
Sugawara I., Akiyama S., Scheper R.J., et al.
Lung resistance protein (LRP) expression in human normal tissues comparison with that of MDR1 and MRP.
Cancer Lett., 112 (1997), pp. 23-31
[59.]
Godstein L.J..
MDR1 Gene Expression in Solid Tumours.
Eur J Cancer, 32A (1996), pp. 1039-1050
[60.]
Trock B., Leonessa F., Clarke R..
Multidrug Resistance In Breast Cancer: A Meta-Analisys Of MDR1/Gp170 Expression And Its Possible Functional Significace.
J Natl Cancer Inst, 89 (1997), pp. 917-931
[61.]
Ng I., Lam K., Ng M., et al.
Expression of P-glycoprotein, a multidrug-resistance gene product, is induced by radiotherapy in patients with oral squamous cell carcinoma.
Cancer, 83 (1998), pp. 851-857
[62.]
Rappa G., Loico A., Flavell R., et al.
Evidence that the multidrug resitance protein (MRP) functions as a co-transporter of glutathione and natural product toxins.
Cancer Res., 57 (1997), pp. 5232-5237
[63.]
Grant C.E., Valdimarsson G., Hipfner D.R., et al.
Overexpression of Multidrug Resistance-Associated Protein (MRP) Increases Resistance to Natural Product Drugs.
Cancer Res., 54 (1994), pp. 357-361
[64.]
Young L.C., Campling B.G., Voskolou-Nomikos T., et al.
Expression of Multidrug Resistance Protein-related Genes in Lung Cancer : Correlation with Drug Response.
Clin Cancer Res., 5 (1999), pp. 673-680
[65.]
Thomas G.A., Barrand M.A., Stewart S., et al.
Expression of the Multidrug Resistance-Associated Protein (MRP) Gene in Human Lung Tumours and Normal Tissue as Determined by In Situ Hybridisation.
Eur J Cancer, 30 (1994), pp. 1705-1709
[66.]
Jedlitschky G., Leier I., Buchholz U., et al.
ATP-dependent transport of glutathione S-conjugates by the multidrug resistance-associated protein.
Cancer Res., 54 (1994), pp. 4833-4836
[67.]
Busse W.W..
Leukotrienes and inflammation.
Am J Respir Crit Care Med., 157 (1998), pp. S210-S213
[68.]
Young L.C., Campling B.G., Cole S.P.C., et al.
Multidrug Resistance Proteins MRP3, MRP1, and MRP2 in Lung Cancer : Correlation of Protein Levels with Drug Response and Messenger RNA Levels.
Clin Cancer Res., 7 (2001), pp. 1798-1804
[69.]
Oguri T., Isobe T., Fujitaka K., et al.
Association between expression of the MRP3 gene and exposure to platinum drugs in lung cancer.
Int J Cancer, 93 (2001), pp. 584-589
[70.]
Scheper R.J., Broxterman H.J., Scheffer G.L., et al.
Overexpression of a Mr 110.000 Vesicular Protein in Non-P-Glycoprotein-Mediated Multidrug Resistance.
Cancer Res., 53 (1993), pp. 1475-1479
[71.]
Slovak M.L., Pelkey Ho J., Cole S.P.C., et al.
The LRP gene encoding a major vault protein associated with drug resistance maps proximal to MRP on cromosoma 16 : Evidence that chromosoma breakage plays a key role in MRP or LRP gene amplification.
Cancer Res., 55 (1995), pp. 4214-4219
[72.]
Kedersha N.L., Rome L.H..
Isolation and Characterization of a Novel Ribonucleoprotein Particle: Large Structures Contain a Single Species of Small RNA.
J Cell Biol., 103 (1986), pp. 699-709
[73.]
Chugani D.C., Rome L.H., Kedersha N.L..
Evidence that Vault Ribonucleoprotein Particles Localize to The Nuclear Pore Complex.
J Cell Sci., 106 (1993), pp. 23-29
[74.]
Dingemans AMC, van Ark-Otte J, van der Valk P, et al.
Expression of the human major vault protein LRP in human lung cancer samples and normal lung tissues.
Annals of Oncology, 7 (1996), pp. 625-630
[75.]
Izquierdo M.A., Scheffer G.L., Flens M.J., et al.
Broad distribution of the multidrug resistance-related vault lung resistance protein in normal human tissues and tumors.
Am J Pathol., 148 (1996), pp. 877-887
[76.]
Izquierdo M.A., Shoemaker R.H., Flens M.J., et al.
Overlapping phenotipes of multidrug resistance among panels of human cancer-cell lines.
[77.]
Ikeda K., Oka M., Narasaki F., et al.
Lung resistance-related protein gene expression and drug sensitivity in human gastric and lung cancer cells.
Anticancer Res., 18 (1998), pp. 3077-3080
[78.]
Allikmets R., Schriml L., Hutchinson A., et al.
A human placenta-specific ATP-binding cassette gene (ABCP) on chromosoma 4q22 that is involved in multidrug resistance.
Cancer Res., 58 (1998), pp. 5337-5339
[79.]
Miyake K., Mickley L., Litman T., et e.l..
Molecular cloning of cDNA which are highly overexpress in mitoxantrone-resistant cells: demostration of homology to ABC transport genes.
Cancer Res., 59 (1999), pp. 8-13
[80.]
Ross D., Yang W., Abruzzo L., et al.
Atipycal multidrug resistance: breast cancer resistance protein messenger RNA expression in mitoxantrone- selected cell lines.
J Natl Cancer Inst, 91 (1999), pp. 429-433
[81.]
Maliepaard M., van Gastelen M.A., de Jong L.A., et al.
Overexpression of the BCRP/MXR/ABCP gene in a topotecan selected ovarian tumor cell line.
Cancer Res., 59 (1999), pp. 4559-4563
[82.]
Ross D.D., Karp J.E., Chen T.T., et al.
Expression of breast cancer resistance protein in blast cells from patients with acute leukemia.
Blood, 96 (1999), pp. 365-368
[83.]
Kawabata S., Oka M., Soda H., et al.
Expression and functional analyses of breast cancer resistance protein in lung cancer.
Clin Cancer Res., 9 (2003), pp. 3052-3057
[84.]
Faneyte I.F., Kristel P.M., Maliepaard M., et al.
Expression of the breast cancer resistance protein in breast cancer.
Clin Cancer Res., 8 (2002), pp. 1068-1074
[85.]
Broxterman H.J., Lankelma J., Pinedo H.M., et al.
How to Probe Clinical Tumour Samples for P-glycoprotein and Multidrug Resistance-associated Protein.
Eur J Cancer, 32A (1996), pp. 1024-1033
[86.]
Campling B.G., Young L.C., Baer K.A., et al.
Expression of the MRP and MDR1 multidrug resistance genes in small cell lung cancer.
Clin Cancer Res., 3 (1997), pp. 115-122
[87.]
Duhem C., Ries F., Dicato M..
What does Multidrug Resistance (MDR) Expression Mean in the Clinic?.
The Oncologist, 1 (1996), pp. 151-158
[88.]
Twentyman P.R..
MDR1 (P-glycoprotein) Gene Expression. Implications for Resistance Modifier Trials.
JNCI, 84 (1992), pp. 1458-1460
[89.]
Sonneveld P..
Multidrug resistance in hematological malignancies.
J Intern Med., 247 (2000), pp. 521-534
[90.]
Baumforth K.N.R., Nelson P.N., Digby J.E., et al.
The Polymerase chain reaction.
J Clin Pathol: Mol Pathol., 52 (1999), pp. 1-10
[91.]
Giaccone G., van Ark-Otte J., Rubio G.J., et al.
MRP is frequently expressed in human lung-cancer cell lines, in non-small-cell lung cancer and in normal lungs.
[92.]
Beck W.T., Grogan T.M., Willman C.L., et al.
Methods to detect P-glycoprotein-associated multidrug resistance in patients tumours: consensus recomendations.
Cancer Res., 56 (1996), pp. 3010-3020
[93.]
Scagliotti G.V., Michelotto F., Kalikatzaros G., et al.
Detection of Multidrug Resistance Associated P-170 Glycoprotein in Previously Untreated Non Small Cell Lung Cancer.
Anticancer Res., 11 (1991), pp. 2207-2210
[94.]
Wright S., Boag A., Valdimarsson G., et al.
Inmunohistochemical detection of multidrug resistance protein in human lung cancer and normal lung.
Cancer Res., 4 (1998), pp. 2279-2289
[95.]
Xu M., Li J., Xia Q..
Expression of multidrug resistance-associated protein gene in non-small cell lung cancer.
Zhonghua Yi Xue Za Zhi, 22 (1999), pp. 268-270
[96.]
Thomas H., Coley H.M..
Overcoming Multidrug Resistance in Cancer: An Update on the Clinical Strategy of Inhibiting P-Glycoprotein.
Cancer control., 10 (2003), pp. 159-165
[97.]
Hendrikse N.H., Franssen E.J., van-der-Graaf W.T., et al.
99mTc-sestamibi is a substrate for P-glycoprotein and the multidrug resistance associated protein.
Br J Cancer, 77 (1998), pp. 353-358
[98.]
Cayre A., Cachin F., Maublant J., et al.
Single static view 99m Tc-sestamibi scintimammography predicts response to neoadyuvant chemotherapy and is related to MDR expression.
Int J Oncol., 20 (2002), pp. 1049-1055
[99.]
Gorlik R., Liao A.C., Antonescu C., et al.
Lack of Correlation of Functional Scintigraphy with 99mTechnetium-Methoxyisobutylisonitrile with Histologycal Necrosis Following Induction Chemotherpy or Measures of P-Glycoprotein Expression in High-Grade Osteosarcoma.
Clin Cancer Res., 7 (2001), pp. 3065-3070
[100.]
Kostakoglu L., Kiratli P., Ruacan S., et al.
Association of tumor washout rates and accumulation of technetium-99m-MIBI with expression of P-glycoprotein in lung cancer.
J Nucl Med., 39 (1998), pp. 228-234
[101.]
Kao A., Shiun S.C., Hsu N.Y., et al.
Technetium-99m metoxyisobutilisonitrilo chest imaging for small cell lung cancer: Relatioship to chemotherpy response (six courses of combination of cisplatin and etoposide) and p-glycoprotein or multidrug resistance related protein expression.
Ann Oncol., 12 (2001), pp. 1516-1566
[102.]
Zhou J., Higashi K., Ueda Y., et al.
Expression of multidrug resistance protein and messenger RNA correlate with (99m)Tc-MIBI imaging in patients with lung cancer.
J Nucl Med., 42 (2001), pp. 1476-1483
[103.]
Kao C.H., Changlai S.P., Chieng P.U., et al.
Technetium-99m Methoxyisobutylisonitrile Chest Imaging of Small Cell Lung Carcinoma.
Cancer, 83 (1998), pp. 64-68
[104.]
Shiau Y., Tsai S., Wang J., et al.
To predict chemotherapy response using technetium-99m tetrofosmin and compare with p-glycoprotein and multidrug resistance related protein-1 expression in patients with untreated small cell lung cancer.
Cancer Lett., 169 (2001), pp. 181-188
[105.]
Dirlik A., Burak Z., Goksel T., et al.
The role of Tc-99m sestamibi imaging in predicting clinical respose to chemotherapy in lung cancer.
Ann Nucl Med., 16 (2002), pp. 103-108
[106.]
Shi D., Huang G., Miao J., et al.
Correlationof the uptake of techne-tium-99 methoxyisobutyl isonitrilo with expression of multidrug resistance genes mdr-1 and MRP in human lung cancer.
Zhonghua Yi Xue Za Zhi, 82 (2002), pp. 824-827
[107.]
Kuo T.H., Liu F.Y., Chuang C.Y..
To predict response chemotherapy using technetium-99m tetrofosmin chest images in patients with untreated small cell lung cancer and compare with p-glycoprotein, multidrug resistance related protein-1, and lung resistance-related protein expression.
Nuclear Med Biol., 30 (2002), pp. 627-632
[108.]
Bates S.E., Chen C., Robey R., et al.
Reversal of multidrug resistance: lessons from clinical oncology.
Novartis Foundation Symposium, 243 (2002), pp. 83-102
[109.]
Pennock G.D., Dalton W.S., Roeske W.R., et al.
Systemic toxic effects associated with high dose verapamil infusion and chemotherapy administration.
JNCI, 83 (1991), pp. 105-110
[110.]
Salmon S.E., Dalton W.S., Grogan T.M., et al.
Multidrug resistant myeloma: Laboratory and clinical effects of Verapamil as a chemosensitizer.
Blood, 78 (1991), pp. 44-50
[111.]
Dalton W.S., Crowley J.J., Salmon S.S., et al.
A phase III randomized study of oral verapamil as a chemosensitizer to reverse drug resistance in pacientes with refractory myeloma. A South-West Oncology Group study.
Cancer, 75 (1995), pp. 815-820
[112.]
Wattel E., Solary E., Hecquet B., et al.
Quinina improves the results of intensive chemotheraphy in myelodysplastic syndromes expressing P-glycoprotein: results of a randomized study.
Br J Haematol., 102 (1998), pp. 1015-1024
[113.]
Milroy R..
A randomized clinical study of verapamil in addition to combination chemotherapy in small-cell lung cancer.
Br J Cancer, 68 (1993), pp. 813-818
[114.]
Loo T.W., Clarke D.M..
Blockage of drug resistance in vitro by disulfiram, a drug used to treat alcoholism.
JNCI, 92 (2000), pp. 898-902
[115.]
Baer M.R., George S.L., Dodge R.K., et al.
Phase III study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 Years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720.
Blood, 100 (2002), pp. 1224-1232
[116.]
Rowinsky E.K., Smith L., Wang Y.M., et al.
Phase I and pharmacokinetic study of paclitaxel in combination with bricodar, a novel agent that reverses multidrug resistance conferred by overexpression of both MDR1 and MRP.
J Clin Oncol., 16 (1998), pp. 2964-2976
[117.]
Dantzig A.H., Law K.L., Cao J., et al.
Reversal of multidrug resistance by the P-glycoprotein modulator, LY335979, from the bench to the clinic.
Curr Med Chem., 8 (2001), pp. 39-50
[118.]
Petrylack D.P., Sher H.I., Reuter V., et al.
Expresión de P-glicoproteina en el carcinoma de células transicionales de vejiga primario y metástasico.
AnnOncol (ed. español), 1 (1995), pp. 68-74
[119.]
Tada Y., Wada M., Migata T., et al.
Increased expresión of multidrug resistance-associated proteins in bladder cancer during clinical course and drug resistance to doxorrubicin.
Int J Cancer, 98 (2002), pp. 630-635
[120.]
Charpin C., Vielh P., Duffaud F., et al.
Quantitative immunocytochemical assays of P-glycoprotein in breast carcinomas: correlation to messenger RNA expression and to immunohistochemical prognostic indicators.
JNCI, 86 (1994), pp. 1539-1545
[121.]
Levine E.A., Holzmayer T., Bacus S., et al.
Evaluation of Newer prognostic Markers for adult Soft Tissue Sarcomas.
J Clin Oncol., 15 (1997), pp. 3249-3257
[122.]
Sinicrope F.A., Hart J., Brasitus T.A., et al.
Relationship of P-glycoprotein and Carcinoembryonic Antigen Expression in Human Colon Carcinoma to Local Invasion, DNA Ploidy, and Disease Relapse.
Cancer, 74 (1994), pp. 2908-2917
[123.]
Benchimol S., Ling V..
P-glycoprotein and tumor progression.
JNCI, 86 (1994), pp. 814-816
[124.]
Chan H.S.L., Haddad G., Thorner P.S., et al.
P-Glycoprotein Expression As A Predictor Of The Outcome Of Therapy For Neuroblastoma.
New Engl J Med., 325 (1991), pp. 1608-1614
[125.]
Chan H.S.L., Thorner P.S., Haddad G., et al.
Immunohistochemical Detection of P-Glycoprotein: Prognostic Correlation in Soft Tissue Sarcoma of Childhood.
J Clin Oncol., 8 (1990), pp. 689-704
[126.]
Schneider J., Gonzalez-Roces S., Pollan M., et al.
Expression of LRP and MDR1 in locally advanced breast cancer predicts axillary node invasion at the time of rescue mastectomy after induction chemotherapy.
Breast Cancer Res., 3 (2001), pp. 183-191
[127.]
Kamazawa S., Kigawa J., Kanamori Y., et al.
Multidrug resistance gene-1 is a useful predictor of Paclitaxel-based chemotherapy for patients with ovarian cancer.
Gynecol Oncol., 86 (2002), pp. 171-176
[128.]
Warmann S., Hunger M., Teichmann B., et al.
The role of the MDR1 gene in the development of multidrug resistance in human hepatoblastoma: clinical course and in vivo model.
Cancer, 95 (2002), pp. 1795-1801
[129.]
Hsu C.H., Chen C.L., Hong R.L., et al.
Prognostic value of multidrug resistance 1, gltathione-s-transferase-pi and p53 in advanced nasopharyngeal carcinoma treated with systemic chemotherapy.
Oncology, 62 (2002), pp. 305-312
[130.]
Chan H.S., Lu Y., Grogan T.M., et al.
Multidrug resistance protein (MRP) expression in retinoblastoma correlates with the rare failure of chemotherapy despite cyclosporine for reversal of P-glycoprotein.
Cancer Res., 57 (1997), pp. 2325-2330
[131.]
Baldini N., Scotlandi K., Barbanti-Brodano G., et al.
Expression of P-glycoprotein in hiah grade osteosarcoma in relation to dlinical out come.
N Engl J Med., 333 (1995), pp. 1380-1385
[132.]
Cheson B.D..
Miscellaneous Chemotherapeutic Agents Cancer, Principles and Practice of Oncology.
6, pp. 452-459
[133.]
Choi J.H., Lim H.Y., Joo H.J., et al.
Expression of multidrug resistance-associated protein 1, P-glycoprotein, and thymidylate synthase in gastric cancer patients treated with 5-fluorouracil and doxorubicin-based adyuvant chemotherapy after curative resection.
Br J Cancer, 86 (2002), pp. 1578-1585
[134.]
Oudard S., Levalois C., Andrieu J.M., et al.
Expression of genes involved in chemoresistance, proliferation and apoptosis in clinical samples of renal cell carcinoma and correlation with a clinical outcome.
Anticancer Res., 22 (2002), pp. 121-128
[135.]
Arts H.J.G., Katsaros D., de Vries E.G.E., et al.
Drug Resistance-associated Markers P-Glycoprotein, Multidrug Resistance-associated Protein 1, Multidrug Resistance-associated Protein 2, and Lung Resistance Protein as Prognostic Factors in Ovarian Carcinoma.
Clin Cancer Res., 5 (1999), pp. 2798-2805
[136.]
Nakayama K., Kanzaki A., Ogawa K., et al.
Copper-transporting P-type adenosine triphosphate (ATP7B) as a cisplatin based chemoresistance marker in ovarian carcinoma: comparative analysis with expression of MDR1, MRP1, MRP2, LRPand BCRP.
IntJ Cancer, 101 (2002), pp. 488-495
[137.]
Wunder J.S., Bull S.B., Aneliunas V., et al.
MDR1 Gene Expression and Outcome in Osteosarcoma: A Prospective, Multicenter Study.
J Clin Oncol., 18 (2000), pp. 2685-2694
[138.]
Kanzaki A., Toi M., Nakayama K., et al.
Expression of multidrug resistance-related transportes in human breast carcinoma.
Jpn J Cancer Res., 92 (2001), pp. 452-458
[139.]
Soini Y., Järvinen K., Kaarteenaho-Wiik R., et al.
The expression of P-glycoprotein and multidrug resistance proteins 1 and 2 (MRP1 and MRP2) in human malignant mesothelioma.
Ann Oncol., 12 (2001), pp. 1239-1245
Copyright © 2006. Academia de Ciencias Médicas de Bilbao
Descargar PDF
Opciones de artículo