covid
Buscar en
Gaceta Médica de Bilbao
Toda la web
Inicio Gaceta Médica de Bilbao Modulación de las cinasas dependientes de ciclinas como nueva estrategia terapÃ...
Información de la revista
Vol. 102. Núm. 2.
Páginas 31-39 (enero 2004)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 102. Núm. 2.
Páginas 31-39 (enero 2004)
Acceso a texto completo
Modulación de las cinasas dependientes de ciclinas como nueva estrategia terapéutica
Cyclin dependent kinase modulation as a new therapeutic approach
Visitas
7971
U. Lertxundi, B. Corcóstegui, J. Peral, O. Ibarra, M.J. Martinez
Servicio de Farmacia. Hospital de Galdakao. Galdakao. Bizkaia. España UE.
Este artículo ha recibido
Información del artículo
Resumen

Muchas neoplasias humanas tienen su origen en una hiperactividad de las cinasas dependientes de ciclinas (CDKs), lo que conduce a un desajuste del ciclo celular. Por lo tanto, el desarrollo de inhibidores específicos de dichas proteínas es una estrategia muy atractiva en la prevención y tratamiento del cáncer.

El flavopiridol y el UCN-01 son los primeros moduladores de las CDKs que se han introducido en ensayos clínicos. Los resultados obtenidos hasta el momento no han sido del todo satisfactorios, pero es posible que la combinación con agentes antineoplásicos clásicos y el desarrollo de agentes más selectivos les permita demostrar todo el potencial que se le supone a este nuevo grupo terapéutico.

Palabras clave:
ciclina
cinasa
terápia
cáncer
Abstract

Hyperactivation of the key regulators of the cell cycle, the cyclin dependent kinases (CDKs), occurs in many human neoplasms. Therefore, modulation of these proteins may have an important use for cancer therapy and prevention.

Flavopiridol and UCN-01 are the first compounds to enter clinical trials. Although results haven't been as good as expected so far, combination with classic chemoterapic agents and the development of more selective agents will probably produce better results.

Key words:
cyclin
kinase
therapy
cancer
Laburpena

Giza neoplasia ugarik ziklinen (CDK-k) mende diren zinasen hiperaktibitatean dute jatorria, eta horrek ondorio gisa ziklo zelularraren desdoitzea dakar. Beraz, proteina horien inhibitzaile berariazkoen garapena oso estrategia erakargarria da minbiziaren prebentzioa eta tratamendua egiteko.

Flabopiridola eta UCN-01a entsegu klinikoetan sartu diren CDKen lehen modulatzaileak dira. Orain arte lortu diren emaitzak ez dira erabat egokiak izan, baina litekeena da eragile antineoplasikoekin konbinatuz gero eta eragile selektiboagoak garatuz gero, talde terapeutiko berri horretatik espero den potentzial guztia frogatzen lagunduko diela.

El Texto completo está disponible en PDF
Bibliografía
[1.]
Vermeulen K., Van Bockstaele D., Berneman Z..
The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer.
Cell Prolif, 36 (2003), pp. 131-149
[2.]
Harbour J.W., Luo R.X., Dei Santi A., et al.
Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1.
Cell, 98 (1999), pp. 859-869
[3.]
Morgan D.O..
Principles of CDK regulation.
Nature, 374 (1995), pp. 131
[4.]
Zindy F., Cunningham J., Sherr C., Jogal S., Smeyne R..
Postnatal neuronal proliferation in mice lacking INK4d and KIP1 inhibitors of cyclin-dependent kinases.
Proc Natl Acad Sci USA, 96 (1999), pp. 13462
[5.]
Sedlacek H.H..
Mechanisms of action of flavopiridol.
Crit Rew Oncol Hematology, 38 (2001), pp. 139-170
[6.]
Maccioni R.B., Otth C., Concha I.I., et al.
The protein kinase Cdk5.
Structural aspects, roles in neurogenesis and involvement in Alzheimer's pathology. Eur J Biochem, 268 (2001), pp. 1518
[7.]
Chao S.H., Fujinaga K., Marion J.E., et al.
Flavopi-ridol inhibits P-TEFb and blocks HIV-1 replication.
J Biol Chem, 275 (2000), pp. 28345
[8.]
Melillo G., Sausville E.A., Cloud K., et al.
Flavopiridol, a protein kinase inhibitor, down-regulates hypoxic induction of vascular endothelial growth factor expression in human monocytes.
Cancer Res., 59 (1999), pp. 5433
[9.]
Brusselbach S., Nettelbeck D.M., Sedlacek H.H., et al.
Cell cycle-independent induction of apoptosis by the anti-tumor drug flavopiridol in endothelial cells.
Int J Cancer, 77 (1998), pp. 146
[10.]
Lee H.R., Chang T.H., Tebalt M.J., et al.
Induction of differentiation accompanies inhibition of Cdk2 in a non-small cell lung cancer cell line.
Int J Oncol., 15 (1999), pp. 161
[11.]
Hagenauer B., Salamon A., Thalhammer T., et al.
In Vitro Glucuronidation of the Cyclin-Depen-dent Kinase Inhibitor Flavopiridol by Rat and Human Liver Microsomes: Involvement of UDP-Glucuronosyltransferases 1A1 and 1A9.
Drug Metab Dispos, 29 (2001), pp. 407
[12.]
Ramirez J., Iyer L., Journault K., et al.
In Vitro Characterization of Hepatic Flavopiridol Metabolism Using Human Liver Microsomes and Recombinant UGT Enzymes.
Pharmaceutical Research, 19 (2002), pp. 588
[13.]
Senderowicz A.M..
Flavopiridol: the first cyclin-dependent kinase inhibitor in human clinical trials.
Invest New Drugs, 17 (1999), pp. 313
[14.]
Senderowicz A.M., Headlee D., Stinson S.F., et al.
Phase I trial of continuous infusion flavopiridol, a novel cyclin-dependent kinase inhibitor, in patients with refractory neoplasms.
J Clin Oncol., 16 (1998), pp. 2986
[15.]
Kahn M.E., Senderowicz A., Sausville E.A., et al.
Possible mechanisms of diarrheal side effects associated with the use of a novel chemothera-peutic agent, flavopiridol.
Clin Cancer Res., 7 (2001), pp. 343
[16.]
Messmann R.A., Ullmann C.D., Lahusen T., et al.
Flavopiridol-related proinflamatory syndrome is associated with induction of interleukin-6.
Clin Cancer Res., 9 (2003), pp. 562
[17.]
Rudek M.A., Bauer K., Lush R..
Clinical pharmacology of flavopiridol following a 72 hour continuous infusion.
Ann Pharmacother, 37 (2003), pp. 1369
[18.]
Innocenti F., Stadler W.M., Iyer L., et al.
Flavo-piridol metabolism in cancer patients is associated with the occurrence of diarrhea.
Clin Cancer Res., 6 (2000), pp. 3400
[19.]
Thomas J., Cleary J., Tutsch K., et al.
Phase I clinical and pharmacokinetic trial of flavopiridol.
Proc Am Assoc Cancer Res, 38 (1997), pp. 222
[20.]
Schwartz G.K., Ilson D., Saltz L., et al.
Phase II study of the cyclin-dependent kinase inhibitor flavopiridol administered to patients with advanced gastric carcinoma.
J Clin Oncol., 19 (2001), pp. 1985
[21.]
Stadler W.M., Vogelzang N.J., Amato R., et al.
Flavopiridol, a novel cyclin-dependent kinase inhibitor, in metastatic renal cancer: a University of Chicago Phase II Consortium study.
J Clin Oncol., 18 (2000), pp. 371
[22.]
Shapiro G.I., Supko J.G., Patterson A., et al.
A phase II trial of the cyclin-dependent kinase inhibitor flavopiridol in patients with previously untreated stage IV non-small cell lung cancer.
Clin Cancer Res., 7 (2001), pp. 1590
[23.]
Aklilu M., Kindler H.L., Donehower R.C..
Phase II study of flavopiridol in patients with advanced colorectal cancer.
Ann Oncol, 14 (2003), pp. 127
[24.]
Kouroukis C., Belch A., Crump M., et al.
Flavo-piridol in untreated or relapsed mantle-cell lymp-homa:results of a phase II study of the national cancer institute of Canada trials group.
J Clin Oncol., 21 (2003), pp. 1740
[25.]
Zhai S., Sausville E.A., Senderowicz A.M., et al.
Clinical pharmacology and pharmacogenomics of flavopiridol 1h-iv infusion in patients with refractory neoplasms.
Anticancer drugs, 14 (2003), pp. 125
[26.]
Senderowicz A.M., Messmann R., Arbuck S., et al.
A phase I trial of 1 hour infusion of flavopiri-dol (FLA), a novel cyclin-dependent kinase inhibitor, in patients with advanced neoplasms.
Proc Am Soc Clin Oncol., (2000), pp. 204a
[27.]
Tan A., Messmann R., Sausville E., et al.
Phase I clinical and pharmacokinetic study of flavopiridol administered as a daily 1-hour infusion in patients with advanced neoplasms. J Clin Oncol, 20 (2002), pp. 4074-4082
[28.]
Cancer.gov. National Cancer Institute. Clinical trials. 10 Octubre 2003 Disponible en web: www.nci.nih.gov/clinicaltrials/.
[29.]
Bible K.C., Kaufmann S.H..
Cytotoxic synergy between flavopiridol (NSC 649890, L86-8275) and various antineoplastic agents: the importance of sequence of administration.
Cancer Res., 57 (1997), pp. 3375
[30.]
Grant S., Roberts J..
The use of cyclin dependent kinase inhibitors alone or in combination with established cytotoxic drugs in cancer chemotherapy.
Drug Resist Updat., 6 (2003), pp. 15
[31.]
Schwartz G.K., Kaubisch A., Saltz L., et al.
Phase I trial of sequential paclitaxel and the cyclin dependent kinase inhibitor flavopiridol.
Proc Am Soc Clin Oncol., (1999), pp. 160ª
[32.]
Seynaeve C.M., Kazanietz M.G., Blumberg P.M., et al.
Differential inhibition of protein kinase C isozymes by UCN-01, a staurosporine analogue.
Mol Pharmacol., 45 (1994), pp. 1207
[33.]
Busby E.C., Leistritz D.F., Abraham R.T., et al.
The radiosensitizing agent 7-hydroxystaurospo-rine (UCN-01) inhibits the DNA damage checkpoint kinase hChk1.
Cancer Res., 60 (2000), pp. 2108
[34.]
Sausville E.A., Arbuck S.G., Messmann R., et al.
Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms.
J Clin Oncol., 19 (2001), pp. 2319
[35.]
Sausville E.A., Lush R.D., Headlee D., et al.
Clinical pharmacology of UCN-01: initial observations and comparison to preclinical models.
Cancer Chemother Pharmacol., 42 (1998), pp. S54-S59
[36.]
Fuse E., Tanii H., Kurata N., et al.
Unpredicted clinical pharmacology of UCN-01 caused by specific binding to human alpha1-acid glycoprotein.
Cancer Res., 58 (1998), pp. 3248-3253
[37.]
Tamura T., Sasaki Y., Minami H., et al.
Phase I study of UCN-01 by 3-hour infusion.
Proc Am Soc Clin Oncol., 18 (1999), pp. 159a
[38.]
Zaharevitz D.W., Gussio R., Leost M., Sende-rowicz A., Lahusen T., Kunick C., Meijer L., Sausville E.A..
Discovery and initial characterization of the paullones, a novel class of small-molecule inhibitors of cyclin-dependent kinases.
Cancer Res., 59 (1999), pp. 2566
[39.]
Hoessel R., Leclerc S., Endicott J., et al.
Indi-rubin, the active component of a Chinese anti-leukemia medicine, inhibits cyclin dependent kinases.
Nat Cell Biol., 1 (1999), pp. 60
[40.]
Havlicek L., Hanus J., Vesely J., et al.
Cytoki-nin-Derived Cyclin-Dependent Kinase Inhibitor: Synthesis and cdc2. Inhibitory Activity of Olo-moucine and Related Compounds.
J. Med. Chem., 40 (1997), pp. 408
[41.]
Senderowicz A.M..
Cyclin dependent kinases as new targets for the prevention and treatment of cancer.
Hematol Oncol Clin North Am., 16 (2002), pp. 1229
[42.]
Senderowicz A.M..
Cyclin dependent kinases a targets for cancer therapy.
Cancer Chemother Biol Response Modif., 20 (2002), pp. 169
[43.]
Senderowicz A.M..
Novel direct and indirect cyclin-dependent kinase modulators for the prevention and treatment of human neoplasms.
Cancer Chemoth Pharm, 52 (2003), pp. 61
[44.]
Senderowicz A.M..
Small molecule cyclin-dependent kinases modulators.
Oncogene, 22 (2003), pp. 6609
Copyright © 2005. Academia de Ciencias Médicas de Bilbao
Descargar PDF
Opciones de artículo