covid
Buscar en
Infectio
Toda la web
Inicio Infectio Bacterias patógenas con alta resistencia a antibióticos: estudio sobre reservo...
Información de la revista
Vol. 14. Núm. 1.
Páginas 6-19 (marzo 2010)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 14. Núm. 1.
Páginas 6-19 (marzo 2010)
Open Access
Bacterias patógenas con alta resistencia a antibióticos: estudio sobre reservorios bacterianos en animales cautivos en el zoológico de Barranquilla
Captive animals at Barranquilla's zoo are reservoirs of high resistance bacterial pathogens
Visitas
3063
Julio Vargas1, Salim Máttar1,
Autor para correspondencia
mattarsalim@hotmail.com

Correspondencia: Salim Máttar V. Ph.D. Universidad de Córdoba, Instituto de Investigaciones Biológicas del Trópico, Facultad de Medicina Veterinaria y Zootecnia. Tel.: (475)60710; http://www.unicordoba.edu.co/institutos/iibt/
, Santiago Monsalve1
1 Universidad de Córdoba, Instituto de Investigaciones Biológicas del Trópico, Facultad de Medicina Veterinaria y Zootecnia, Montería, Córdoba
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Objetivo

Identificar y establecer la suceptibilidad antimicrobiana de bacterias patógenas halladas en el sistema gastrointestinal y el respiratorio de animales en cautiverio en el zoológico de Barranquilla.

Materiales y métodos

Se tomaron muestras de cloacas y glotis de 30 aves, y frotis rectales y nasales de 29 mamíferos, los animales fueron inmovilizados mecánicamente y, luego, anestesiados. Las bacterias se identificaron con pruebas bioquímicas como: urea, SIM (sulfide-indole-motility medium), TSI (triple sugar iron), LIA (line immunoassay) y citrato. Algunos aislamientos se confirmaron con el sistema API 20E (Biomerieux, S.A., Marcy I’Etoile, France) o Microscan® Neg combo panel type 32 (Dade behring, CA, USA). La sensibilidad a los antimicrobianos se evaluó con el método de Bauer y Kirby, teniendo en cuenta las normas del Clinical and Laboratory Standards Institute (CLSI).

Resultados

Se obtuvieron 89 cepas de bacterias; 45 de aves y 44 de mamíferos. Las más frecuentes fueron: Escherichia coli (n=31), K. pneumoniae (n=20), Enterobacter cloacae (n=10), Pseudomonas aeruginosa (n=5), Staphylococcus aureus (n=5) y P. stutzeri (n=4). Las bacterias Gram negativas y Staphylococci fueron resistentes respectivamente a las siguientes familias de antibióticos: tetraciclinas (28% y 57,1%), cloramfenicol (14,6% y 57,1%) y β-lactámicos (54,2% y 42,8%). El porcentaje de resistencia de las bacterias Gram negativas a las fluoroquinolonas fue de 6,1% y, a los aminoglucósidos, de 2,4%; el de los estafilococos a los macrólidos fue de 64,2%. Veinticuatro cepas (27%) fueron multiresistentes a múltiples antibióticos: 16 en aves (36%) y 8 en mamíferos (18%).

Conclusión

La resistencia a uno o a varios antibióticos en las bacterias aisladas de los animales cautivos del zoológico de Barranquilla, es un factor de riesgo para su salud. A su vez, estos animales son reservorios de bacterias y de genes de resistencia, potencialmente importantes en la diseminación de estos factores de resistencia. Las similitudes en la resistencia bacteriana hallada en cepas animales y en cepas humanas, hacen presumir una movilidad de los clones de resistencia entre la especie Homo sapiens y las especies animales.

Palabras clave:
zoológico
antibióticos
resistencia bacteriana
animales cautivos
Colombia.
Abstract
Objective

The objective is to determine respiratory and enteric bacterial pathogens and antimicrobial susceptibility in captive animals at Barranquilla Zoo.

Materials and methods

Samples were taken from rectus and glottis in 30 birds and nasal and rectal swabs from 29 mammals, which were restricted mechanically and then anesthetized. Bacteria were identified by using biochemical tests such as: Urea, SIM, TSI, LIA and Citrate, some bacteria isolates were confirmed with API 20E (Biomerieux SA, Marcy I’Etoile, France) or Micro scan® Neg combo panel type 32 (Dade Behring, CA, USA). Antimicrobial susceptibility was assessed using the Bauer and Kirby method and taking into account CLSI regulation. Results Eighty-nine strains were obtained, 45 from birds and 44 from mammals. The most frequent bacteria were: E. coli (n=31), Klebsiella pneumoniae (n=20), Enterobacter cloacae (n=10), Pseudomonas aeruginosa (n=5), Staphylococcus aureus (n=5) and Pseudomonas stuzeri (n=4). Gram negative bacteria and Staphylococci were respectively resistant to the following antibiotics: tetracycline (28% and 57.1%), chloramphenicol (14.6% and 57.1%) and β-lactam (54.2% and 42.8); Gram-negative was (6.1%) resistant to Fluorquinolones and (2.4%) resistant to aminoglycosides; and Staphylococci were (64.2%) resistant to macrolides. Twentyfour (27%) were multi-resistant: 16 (36%) in birds and 8 (18%) in mammals.

Conclusion

Resistance to one or more antibiotics in bacteria isolated from captive animals Barranquilla Zoo, is a risk factor for health for the animals themselves. The zoo animals are potential reservoirs for bacteria and resistance genes clinically important in the spread of these resistance factors. The resistance similarities found in animal and human strains suggest clone mobility between the sapiens species and the animals.

Key words:
zoological
antibiotics
resistance
animals
Colombia
El Texto completo está disponible en PDF
Referencias
[1.]
C. Steele, R. Brown, R. Botzler.
Prevalences of zoonotic bacteria among seabirds in rehabilitation centers along the coast of California and Washington.
USA. J Wildlife Dis, 41 (2005), pp. 735-744
[2.]
S. Guan, R. Xu, S. Chen, J. Odumeru, C. Gyles.
Development of a procedure for discriminating among Escherichia coli isolates from animals and human sources.
Appl Enviroml Microbiol, 68 (2002), pp. 2690-2698
[3.]
A. Sawant, N. Hegde, B. Straley, S. Donaldson.
Antimicrobialresistant enteric bacteria from dairy cattle.
Appl Enviroml Microbiol, 73 (2007), pp. 156-163
[4.]
A.M. Ahmed, Y. Motoi, M. Sato, A. Maruyama, H. Watanabe, Y. Fukumoto, T. Shimamoto.
Zoo animals as reservoirs of Gram-negative bacteria harboring integrons and antimicrobial resistance genes.
Appl Environ Microbiol, 73 (2007), pp. 6686-6690
[5.]
J. Middleton, A. Ambrose.
Enumeration and antibiotic resistance patterns of fecal indicator organisms isolated from migratory Canada geese (Branta canadensis).
J Wild Dis, 41 (2005), pp. 334-341
[5.]
K.P. Satoshi-Ishii, M. Meyer, J. Sadowsky.
Relationship between phylogenetic groups, genotypic clusters, and virulence gene profiles of Escherichia coli strains from diverse human and animal sources.
Appl Environ Microbiol, 73 (2007), pp. 5703-5710
[6.]
M. Ostebland, E. Norrdahi, Kerpimaki, E. Huovinen.
Antibiotic resistance.
How wild are wild mammals. Nature, 409 (2001), pp. 37-38
[7.]
D. Girlich, L. Poirel, A. Carattoli, I. Kempf, M.F. Lartigue, A. Bertini, P. Nordmann.
Extended-spectrum beta lactamase CTXM- 1 in Escherichia coli isolates from healthy poultry in France.
Appl Environ Microbiol, 73 (2007), pp. 4681-4685
[8.]
K. Ziebell, P. Konczy, I. Yong, S. Frost, M. Mascarenhas, A. Kropinski, et al.
Applicability of phylogenetic methods for characterizing the public health significance of verocytotoxinproducing Escherichia coli strains.
Appl Environ Microbiol, 74 (2008), pp. 1671-1675
[9.]
J.M. Adaska, A.J. Silva, A.C. Berge, W.M. Sischo.
Genetic and phenotypic variability among Salmonella enterica serovar Typhimurium isolates from California dairy cattle and humans.
Appl Environ Microbiol, 72 (2006), pp. 6632-6637
[10.]
A. Khachatryan, T. Besser, Dale, D. Hancock, D.R. Call.
Use of a nonmedicated dietary supplement correlates with increased prevalence of streptomycin-sulfa-tetracycline-resistant Escherichia coli on a dairy farm.
Appl Environ Microbiol, 72 (2006), pp. 4583-4588
[11.]
R. Mahony, T. Quinn, D. Drudy, C. Walsh, P. White, S. Mattar, et al.
Antimicrobial resistance in nontyphoideal Salmonella from food sources in Colombia: evidence for unusual plasmid- localized class 1 integron in serotypes Typhymurium and Anatum.
Microbial Drug Resistance, 12 (2006), pp. 269-277
[12.]
S. Máttar, P. Martínez.
Emergencia de la resistencia antibiótica debida a las β-lactamasas de espectro extendido (BLEE): detección, impacto clínico y epidemiología.
Infectio, 11 (2007), pp. 23-35
[13.]
P. Martínez, S. Máttar.
Pseudomonas aeruginosa y Acinetobacter baumanii productores de metalo beta-lactamasas en el principal hospital de Córdoba.
Infectio, 9 (2005), pp. 6-14
[14.]
P. Martínez, P. Espinal, S. Máttar.
Epidemiología molecular de Pseudomonas aeruginosa resistente a β-lactámicos de amplio espectro en el Hospital San Jerónimo de Montería.
Infectio, 11 (2007), pp. 6-15
[15.]
Clinical and Laboratory Standard Institute (CLSI). Performance Standards for antimicrobial disk susceptibility test. Information the 8th ed. Supplement M100-s15 document M2-A8. Wayne, PA: Clinical and Laboratory Standards Institute; 2005.
[16.]
J.B. Bender, S.A. Shulman.
Reports of zoonotic disease outbreaks associated with animal exhibits and availability of recommendations for preventing zoonotic disease transmission from animals to people in such settings.
J Am Vet Med Assoc, 224 (2004), pp. 1105-1109
[17.]
K. Balde, M. Stosik.
Prevalence of antibiotic resistance profile in relation to phylogenetic background among comensal Escherichia coli derived from various mammals.
Polish Journal of Microbiology, 56 (2007), pp. 175-183
[18.]
García F. Diseminación de mecanismos de resistencia a antibióticos entre bacterias de origen humano, animal y agrícola: impacto en la salud pública y en el medio ambiente. Fecha de consulta: 6 de abril de 2008. Disponible en: www.conicit.gov.cr/boletin/boletin/resumOPS.shtml.
[19.]
S. Ishii, M. Meyer, J. Sadowsky.
Relationship between phylogenetic groups, genotypic clusters, and virulence gene profiles of Escherichia coli strains from diverse human and animal sources.
Appl Environ Microbiol., 73 (2007), pp. 5703-5710
[20.]
J.L. Martínez.
Antibiotics and antibiotic resistance genes in natural environments.
Science, 321 (2008), pp. 365-367
[21.]
C. Cruz, J. Moreno, A. Renzoni, M. Hidalgo, J. Reyes, J. Schrenzel, et al.
Tracking methicillin-resistant Staphylococcus aureus clones in Colombian hospitals over 7 years (1996-2003): emergence of a new dominant clone.
Int J Antimicr Agents, 26 (2005), pp. 457-462
[22.]
D. Lozano, S. Máttar.
Primer reporte de Staphylococcus aureus meticilino resistente (SAMR) productores de Panton- Valentine-Leucocidina (PVL) en animales domésticos en Colombia.
Infectio, 12 (2008), pp. 111
[23.]
T. Goldbertg, T. Gillespie, I. Rwego, E. Estoff, C. Chapman.
Forest fragmentation as cause of bacterial transmission among, nonhuman primates, humans and livestock, Uganda.
EID, 14 (2008), pp. 1375-1382
[24.]
J.M. Montgomery, D. Gillespie, P. Sastrawan, T.M. Fredeking, G.L. Stewart.
Aerobic salivary bacteria in wild and captive Komodo dragons.
J Wild Dis, 38 (2002), pp. 545-551
Copyright © 2010. Asociación Colombiana de Infectología (ACIN)
Descargar PDF
Opciones de artículo