covid
Buscar en
Infectio
Toda la web
Inicio Infectio Biology of Trypanosoma cruzi: An update
Información de la revista
Vol. 16. Núm. 1.
Páginas 45-58 (marzo 2012)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 16. Núm. 1.
Páginas 45-58 (marzo 2012)
Artículo de Revision
Open Access
Biology of Trypanosoma cruzi: An update
Biología del Trypanosoma cruzi: Actualización
Visitas
3778
André Vianna Martins1, Andréia Patrícia Gomes2, Eduardo Gomes de Mendonça3, Juliana Lopes Rangel Fietto3, Luiz Alberto Santana2, Maria Goreti de Almeida Oliveira3, Mauro Geller4,5, Ramon de Freitas Santos3, Rodrigo Roger Vitorino4, Rodrigo Siqueira-Batista2,
Autor para correspondencia
rsbatista@ufv.br

Correspondencia: Departamento de Medicina e Enfermagem, Universidade Federal de Viçosa. Avenida P. H. Rolfs s/n, Campus Universitário, Viçosa, MG, Brasil, CEP 36571- 000.
1 Curso de Graduação em Medicina Veterinária, Curso de Graduação em Medicina, Centro Universitário Serra dos Órgãos (UNIFESO), Teresópolis, RJ, Brasil
2 Departamento de Medicina e Enfermagem, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brasil
3 Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brasil
4 Curso de Graduação em Medicina, Centro Universitário Serra dos Órgãos (UNIFESO), Teresópolis, RJ, Brasil
5 New York University School of Medicine (NYU), New York, USA Work performed in the Departamento de Medicina e Enfermagem and Departamento de Bioquímica e Biologia Molecular of the Universidade Federal de Viçosa (UFV) and the Curso de Graduação em Medicina of the Centro Universitário Serra dos Órgãos (UNIFESO). There is no conflict of interest
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Abstract

Chagas disease, an illness caused by the protozoan Trypanosoma cruzi, is clinically and epidemiologically important in Latin America, and particularly in Brazil. This article presents the main biological characteristics of Trypanosoma cruzi, emphasizing ultrastructural, morphological, evolutionary, transcriptomic, and proteomic aspects. With this purpose a literature review was conducted, which allowed for the construction of different sections of the text. The efforts to expand the knowledge of this protist biology may bring positive implications for the understanding of the pathogenesis, control, and above all, treatment of patients affected by this disease.

Palabras clave:
Trypanosoma cruzi
biologia
transcriptoma
proteoma
Key words:
Trypanosoma cruzi
biology
transcriptome
proteome
Resumo

A moléstia de Chagas, enfermidade causada pelo protozoário Trypanosoma cruzi, apresenta grande relevância clínica e epidemiológica na America Latina, com destaque para o Brasil. Neste artigo serão apresentadas as principais características biológicas do Trypanosoma cruzi, enfatizando-se os aspectos ultra-estruturais, morfológicos, evolutivos, transcriptômicos e proteômicos. Para tanto, foi realizada revisão da literatura, a qual subsidiou a construção de diferentes seções do texto. As investidas para ampliar o conhecimento acerca da biologia do protista poderão trazer implicações positivas para a compreensão da patogênese, do controle e, sobretudo, do tratamento dos pacientes portadores da moléstia.

El Texto completo está disponible en PDF
References
[1.]
V. Amato Neto, J. Pasternak.
Centenário da doença de Chagas.
Ver Saúde Pública, 43 (2009), pp. 381-382
[2.]
I. Castro, J.P. Andrade, A.A.V. Paola, F. Vilas-Boas, G.M.M. Oliveira, J.A. Marin Neto.
I Diretriz Latino-Americana para o Diagnóstico e Tratamento da Cardiopatia Chagásica.
Arq Bras Cardiol, 97 (2011), pp. 1-48
[3.]
J.E.H. Pittella.
O processo de avaliação em ciência e a indicação de Carlos Chagas ao prêmio Nobel de Fisiologia ou Medicina.
Rev Soc Bras Med Trop, 42 (2009), pp. 67-72
[4.]
R. Cabrera, S. Veja, A.G. Cáceres, A.C. Ramal, C. Álvarez, P. Ladeira, et al.
Epidemiological investigation of na acute case of Chagas disease in an area of active tramsission in Peruvian amazon region.
Rev Inst Med Trop, 52 (2010), pp. 269-272
[5.]
J.C.P. Dias.
Doença de Chagas, ambiente, participação e Estado.
Cad Saúde Pública, 17 (2001), pp. 165-169
[6.]
J.H. Maguire.
Chagas’ disease – can we stop the deaths?.
N Engl J Med, 355 (2006), pp. 760-761
[7.]
H.B. Tanowitz, F.S. Machado, L.A. Jelicks, J. Shirani, A.C. de Carvalho, D.C. Spray, et al.
Perspectives on Trypanosoma cruzi-induced heart disease (Chagas disease).
Prog Cardiovasc Dis, 51 (2009), pp. 524-539
[8.]
K.M. Bonney, D.M. Engman.
Chagas heart disease pathogenesis: one mechanism or many?.
Curr Mol Med, 8 (2008), pp. 510-518
[9.]
C.E. Rochitte, M.S. Nacif, A.C. Júnior Oliveira, R. Siqueira-Batista, E. Marchiori, M. Uellendahl, et al.
Cardiac magnetic resonance in Chagas’ disease.
Artif Organs, 31 (2007), pp. 259-267
[10.]
M. Dhiman, E.S. Nakayasu, Y.H. Madaiah, B.K. Reynolds, J.J. Wen, I.C. Almeida, et al.
Enhanced nitrosative stress during Trypanosoma cruzi infection causes nitrotyrosine modification of host proteins.
[11.]
P.V. Capriles, A.C. Guimarães, T.D. Otto, A.B. Miranda, L.E. Dardenne, W.M. Degrave.
Structural modelling and comparative analysis of homologous, analogous and specific proteins from Trypanosoma cruzi versus Homo sapiens: putative drug targets for Chagas’ disease treatment.
BMC Genomics, 11 (2010), pp. 610
[12.]
F. Villalta, J. Scharfstein, A.W. Ashton, K.M. Tyler, F. Guan, S. Mukherjee, et al.
Perspectives on the Trypanosoma cruzi-host cell receptor interactions.
Parasitol Res, 104 (2009), pp. 1251-1260
[13.]
A.G. Schijman, M. Bisio, L. Orellana, M. Sued, T. Duffy, A.M. Mejia Jaramillo, et al.
International study to evaluate PCR methods for detection of Trypanosoma cruzi DNA in blood samples from Chagas disease patients.
PLoS Negl Trop Dis, 5 (2011), pp. e931
[14.]
A.C. Sposito, J.A.F. Ramires, et al.
Doença de Chagas: avanços recentes no diagnóstico e tratamento.
Harrison Medicina Interna, 18a,
[15.]
S.B. Roberts, J.L. Robichaux, A.K. Chavali, P.A. Manque, V. Lee, A.M. Lara, et al.
Proteomic and network analysis characterize stage-specific metabolism in Trypanosoma cruzi.
BMC Systems Biology, 3 (2009), pp. 52
[16.]
C.A. Hoare.
Rationalization of the terminology for the developmental stages of trypanosomatid flagellates.
Med Parazitol (Mosk), 40 (1971), pp. 307-309
[17.]
D.M. Mattei, S. Goldenberg, C. Morel.
Biochemical strain caracterization of Trypanosoma cruzi by restriction endonuclease cleavage of kinetoplast-DNA.
FEBS Letters, 74 (1977), pp. 264-268
[18.]
N. Nogueira, J.R. Coura.
American Trypanosomisasis (Chagas’ Disease).
Tropical and Geographical Medicine, 2nd,
[19.]
L. Rey.
Parasitologia.
4a, Guanabara Koogan, (2008),
[20.]
Z. Brener.
Intraspecific variations in Trypanosoma cruzi: two types of parasite populations presenting distinct characteristics.
PAHO, 347 (1997), pp. 11-21
[21.]
N.D. Levine, J.O. Corliss, F.E.G. Cox.
A newly revised classification of the protozoa.
J Protozool, 27 (1980), pp. 37-58
[22.]
R.E. Mccabe, S. Meagher, B. Mullins.
Trypanosoma cruzi: Explant organ cultures from mice with Chagas’ disease.
Exp Parasitol, 68 (1989), pp. 462-469
[23.]
M. Tibayrenc.
Population genetics of parasitic protozoa and other microorganisms.
Adv Parasitol, 36 (1995), pp. 48-115
[24.]
S.G. Andrade, J.B. Magalhães.
Biodemes and zymodemes of Trypanosoma cruzi strains: correlations with clinical data and experimental pathology.
Rev Soc Bras Med Trop, 30 (1997), pp. 27-35
[25.]
B. Zingales, B.S. Stolf, R.P. Souto, O. Fernandes, M.R. Briones.
Epidemiology, biochemistry and evolution of Trypanosoma cruzi lineages based on ribosomal RNA sequences.
Mem Inst Oswaldo Cruz, 94 (1999), pp. 159-164
[26.]
R.A. Martinez-Diaz, J.A. Escario, J.J. Nogal-Ruiz, A. Gomez-Barrio.
Biological characterization of Trypanosoma cruzi strains.
Mem Inst Oswaldo Cruz, 96 (2001), pp. 53-59
[27.]
S.G. Andrade.
Biodemas, zimodemas e esquizodemas: sua relação com a Patologia da doença de Chagas.
Dinâmica das Doenças Infecciosas e Parasitárias,
[28.]
R. Siqueira-Batista, M. Geller, A.V. Martins, O.M.P. Bastos.
Trypanosoma cruzi.
Moléstia de Chagas, 2a,
[29.]
H. Momem.
Taxonomy of Trypanosoma cruzi: a commentary on characterization and nomenclature.
Mem Inst Oswaldo Cruz, 94 (1999), pp. 181-184
[30.]
E. Chiari, L.M.C. Galvão, E. Lages-Silva.
Diagnóstico parasitológico e caracterização biológica, bioquímica e genética de tripanossomas parasitos do homemm.
Dinâmica das Doenças Infecciosas e Parasitárias,
[31.]
M.M. Villela, J.M.B. Souza, V.P. Melo, J.C.P. Dias.
Vigilância epidemiológica da doença de Chagas em programa descentralizado: avaliação de conhecimentos e práticas de agentes municipais em região endêmica de Minas Gerais, Brasil.
Cad. Saúde Pública, 23 (2007), pp. 2428-2438
[32.]
B. Zingales, S.G. Andrade, M.R. Briones, D.A. Campbell, E. Chiari, O. Fernandes, et al.
Second Satellite Meeting. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI.
Mem Inst Oswaldo Cruz, 104 (2009), pp. 1051-1054
[33.]
S.G. Andrade, R.M. Figueira, M.L. Carvalho, D.F. Gorini.
Influência da cepa do Trypanosoma cruzi na resposta à terapêutica experimental pelo Bay 2502.
Rev Inst Med Trop São Paulo, 18 (1975), pp. 140-141
[34.]
Z. Brener.
Present status of chemotherapy and chemoprophylaxis of human trypanosomes in the western hemisphere.
Pharmacol Therap, 7 (1979), pp. 71-90
[35.]
A.P. Dantas, H.S. Barbosa, S.L. de Castro.
Biological and ultrastructural effects of the anti-microtubule agent taxol against Trypanosoma cruzi.
J Submicrosc Cytol Pathol, 35 (2003), pp. 287-294
[36.]
Z. Brener.
Trypanosoma cruzi: morfologia e ciclo evolutivo.
Clínica e Terapêutica da doença de Chagas: uma abordagem prática para o clínico geral,
[37.]
C.M. Adade, S.L. de Castro, M.J. Soares.
Ultrastructural localization of Trypanosoma cruzi lysosomes by aryl sulphatase cytochemistry.
[38.]
W. De Souza.
Special organelles of some pathogenic protozoa.
Parasitol Res, 88 (2002), pp. 1013-1025
[39.]
J.C.P. Dias, V.O. Macedo.
Doença de Chagas.
Dinâmica das Doenças Infecciosas e Parasitárias,
[40.]
P. Borst, J.H.J. Hoeijmakers.
Structure and function of kinetoplast DNA of African trypanosomes.
Extrachromosomal DNA ICN-UCLA Symposia on Molecular and Cellular Biology,
[41.]
A.H. Fairlarm, P.O. Weislogel, J.H.J. Hoeijmakers, P. Borst.
Isolation and characterization of kinetoplast DNA from bloodstream from of Trypanosoma brucei.
J Cell Biol, 76 (1978), pp. 293-309
[42.]
C.M. Kleisen, P. Borst.
Sequence heterogeneity of the minicircles of kinetoplast DNA of Crithidia luciliae and evidence for the presence of a component more complex than mini-circle DNA in the kinetoplast network.
Biochim Biophys Acta, 407 (1975), pp. 473-478
[43.]
C.M. Kleisen, P.O. Weislogel, K. Fonk, P. Borst.
The structure of kinetoplast DNA. I- The mini-circles of Crithidia luciliae are heterogeneous in base sequence.
Eur J Biochem, 64 (1976), pp. 144-151
[44.]
W. Degrave, S.P. Fragoso, C. Britto, H. Van Heuverswyn, G.Z. Kidane, M.A.B. Cardoso, et al.
Peculiar sequence organization of kinetoplast DNA minicircles from Trypanosoma cruzi.
Mol Biochem Parasitol, 27 (1988), pp. 63-70
[45.]
C.M. Morel, Kinetoplast DNA.
minicircles as multipurpose molecular markers for Trypanosoma cruzi characterization and detection.
Molecular biology and infectious diseases (Colloque du Centenaire de L’Institut Pasteur),,
[46.]
R.A. Macina, D. Sanchez, D. Gluschankof, O. Burrone, A.C.C. Frascha.
Sequence diversity in the kinetoplast DNA minicircles of Trypanosoma cruzi.
Mol Biochem Parasitol, 21 (1986), pp. 25-32
[47.]
R.D. Weslei, L. Simpson.
Studies in kinetoplast DNA. III - Kinetic complexing of kinetoplast and nuclear DNA from Leishmania tarentolae.
Biochim Biophys Acta, 319 (1973), pp. 267-280
[48.]
V.W. Pollard, S.P. Rohrer, E.F. Michlotti, K. Hancock, S.L. Hajduk.
Organization of minicircle genes for guide RNAs in Trypanosoma brucei.
Cell, 63 (1990), pp. 783-790
[49.]
N.R. Sturm, L. Simpson.
Leishmania tarentolae minicircles of different sequence classes encode single guide RNAs located in the variable region approximately 150 bp from the conserved region.
Nucl Acids Res, 19 (1991), pp. 6277-6281
[50.]
W. Souza.
Electron microscopy of trypanosomes – a historical view.
Mem Inst Oswaldo Cruz, 103 (2008), pp. 313-325
[51.]
S.M. Landfear, M. Ignatushchenko.
The flagellum and flagellar pocket of trypanosomatids.
Mol Biochem Parasitol, 115 (2001), pp. 1-17
[52.]
M.C. Field, M. Carrington.
The trypanosome flagellar pocket.
Nat Rev Microbiol, 7 (2009), pp. 775-786
[53.]
R. Docampo, W. de Souza, K. Miranda, P. Rohloff, S.N. Moreno.
Acidocalcisomes - conserved from bacteria to man.
Nat Rev Microbiol, 3 (2005), pp. 251-261
[54.]
G. Lopez-Velazquez, R. Hernandez, I. Lopez-Villasenor, H. Reyes-Vivas, M.D.E.L. Segura-Valdez, L.F. Jimenez-Garcia.
Electron microscopy analysis of the nucleolus of Trypanosoma cruzi.
Microsc Microanal, 11 (2005), pp. 293-299
[55.]
K. Vickerman.
Developmental cycles and biology of pathogenic trypanosomes.
Br Med Bull, 41 (1985), pp. 105-114
[56.]
A.D. Corrêa, N. Miranda Filho, R. Siqueira-Batista, D.W. Huggins.
Papel dos reservatórios na epidemiologia da moléstia de Chagas.
Rev Bras Med, 55 (1998), pp. 414-420
[57.]
C.A. Hoare, F.G. Wallace.
Developmental stages of trypanosomatid flagellates: A new terminology.
Nature, 212 (1966), pp. 1385-1386
[58.]
Z. Brener.
Biology of Trypanosoma cruzi.
Ann Rev Microbiol, 27 (1973), pp. 347-382
[59.]
S.C. Bourguignon, C.B. Mello, M.S. Gonzalez, T. Souto-Padron.
Biological aspects of the Trypanosoma cruzi (Dm28c clone) intermediate form, between epimastigote and trypomastigote, obtained in modified liver infusion tryptose (LIT) medium.
[60.]
C.A. Hoare.
The Trypanosomes of Mammals: A Zoological Monograph.
Blackwell, (1972),
[61.]
V. Ley, N.W. Andrews, E.S. Robbins, V. Nussenzweig.
Amastigotes of Trypanosoma cruzi sustain an infective cycle in mammalian cells.
J Exp Med, 168 (1988), pp. 649-659
[62.]
L. Florencio-Martínez, C. Márquez-Dueñas, G. Ballesteros-Rodea, S. Martínez-Calvillo, R. Manning-Cela.
Cellular analysis of host cell infection by different developmental stages of Trypanosoma cruzi.
Exp Parasitol, 126 (2010), pp. 332-336
[63.]
N.J. Alvarenga, E. Bronfen.
Metaciclogênege do Trypanosoma cruzi como parâmetro de interação do parasita com o triatomíneo vetor.
Rev Bras Med Trop, 30 (1997), pp. 247-250
[64.]
World Health Organization.
Control of Chagas Disease. Second Report of the WHO Expert Committee: Technical Report Series.
World Health Organization, (2002),
[65.]
O. Franzén, S. Ochaya, E. Sherwood, M.D. Lewis, M.S. Llewellyn, M.A. Miles, et al.
Shotgun Sequencing Analysis of Trypanosoma cruzi I Sylvio X10/1 and Comparison with T. cruzi VI CL Brener.
PLoS Negl Trop Dis, 5 (2011), pp. e984
[66.]
P.O. Brown, D. Botstein.
Exploring the new world of the genome with DNA microarrays.
Nature Genet, 21 (1999), pp. 33-37
[67.]
T.A. Minning, J. Bua, G.A. Garcia, R.A. McGraw, R.L. Tarleton.
Microarray profiling of gene expression during trypomastigote to amastigote transition in Trypanosoma cruzi.
Mol Biochem Parasitol, 131 (2003), pp. 55-64
[68.]
C.S. Baptista, R.Z.N. Vêncio, S. Abdala, M.P. Valadares, C. Martins, C.A. de Bragança Pereira, et al.
DNA microarrays for comparative genomics and analysis of gene expression in Trypanosoma cruzi.
Mol Biochem Parasitol, 138 (2004), pp. 183-194
[69.]
T.R. Holzer, W.R. McMaster, J.D. Forney.
Expression profiling by wholegenome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana.
Mol Biochem Parasitol, 146 (2006), pp. 198-218
[70.]
G. Cohen-Freue, T.R. Holzer, J.D. Forney, W.R. McMaster.
Global gene expression in Leishmania.
Int J Parasitol, 37 (2007), pp. 1077-1086
[71.]
V.L. Koumandou, S.K.A. Natesan, T. Sergeenko, M.C. Field.
The trypanosome transcriptome is remodelled during differentiation but displays limited responsiveness within life stages.
BMC Genomics, 9 (2008), pp. 298
[72.]
A. Rochette, F. Raymond, U. Jean-Michel, M. Smith, N. Messier, S. Boisvert, et al.
Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species.
BMC Genomics, 9 (2008), pp. 255
[73.]
P.O. Brown, D. Botstein.
Exploring the new world of the genome with DNA microarrays.
Nature Genetics, 21 (1999), pp. 33-37
[74.]
C. Clayton, M. Shapira.
Post-transcriptional regulation of gene expression in trypanosomes and leishmanias.
Mol Biochem Parasitol, 156 (2007), pp. 93-101
[75.]
S. Haile, B. Papadopoulou.
Developmental regulation of gene expression in trypanosomatid parasitic protozoa.
Curr Opin Microbiol, 10 (2007), pp. 569-577
[76.]
D.A. Campbell, S. Thomas, N.R. Sturm.
Transcription in kinetoplastid protozoa: why be normal?.
Microbes Infect, 5 (2003), pp. 1231-1240
[77.]
S. Diehl, F. Diehl, N.M. El-Sayed, C. Clayton, J.D. Hoheisel.
Analysis of stage-specific gene expression in the bloodstream and the procyclic form of Trypanosoma brucei using a genomic DNA-microarray.
Mol Biochem Parasitol, 123 (2002), pp. 115-123
[78.]
V.D. Luu, S. Brems, J.D. Hoheisel, R. Burchmore, D.L. Guilbride, C. Clayton.
Functional analysis of Trypanosoma brucei PUF1.
Mol Biochem Parasitol, 150 (2006), pp. 340-349
[79.]
A. Saxena, T. Lahav, N. Holland, G. Aggarwal, A. Anupama, Y. Huang, et al.
Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation.
Mol Biochem Parasitol, 152 (2007), pp. 53-65
[80.]
T.A. Minning, D.B. Weatherly, J. Atwood, 3rd, R. Orlando, R.L. Tarleton.
The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi.
BMC Genomics, 10 (2009), pp. 370
[81.]
J. Paba, J.M. Santana, A.R. Teixeira, W. Fontes, M.V. Sousa, C.A. Ricart.
Proteomic analysis of the human pathogen Trypanosoma cruzi.
Proteomics, 4 (2004), pp. 1052-1059
[82.]
A. Parodi-Talice, R. Durán, N. Arrambide, V. Prieto, M.D. Piñeyro, O. Pritsch, et al.
Proteome analysis of the causative agent of Chagas disease: Trypanosoma cruzi.
Int J Parasitol, 34 (2004), pp. 881-886
[83.]
J.A. Atwood 3rd, D.B. Weatherly, T.A. Minning, B. Bundy, C. Cavola, F.R. Opperdoes, et al.
The Trypanosoma cruzi proteome.
Science, 309 (2005), pp. 473-476
[84.]
J.A. Atwood 3rd, T. Minning, F. Ludolf, A. Nuccio, D.B. Weatherly, G. Alvarez- Manilla, et al.
Glycoproteomics of Trypanosoma cruzi trypomastigotes using subcellular fractionation, lectin affinity, and stable isotope labeling.
J Proteome Res, 59 (2006), pp. 3376-3384
[85.]
Z. Wang, M. Gerstein, M. Snyder.
RNA-Seq: a revolutionary tool for transcriptomics.
Nat Rev Genet, 10 (2009), pp. 57-63
[86.]
N.M. El-Sayed, P.J. Myler, D.C. Bartholomeu, D. Nilsson, G. Aggarwal, A.N. Tran, et al.
The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease.
Science, 309 (2005), pp. 409-415
[87.]
K. Leifso, G. Cohen-Freue, N. Dogra, A. Murray, W.R. McMaster.
Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed.
Mol Biochem Parasitol, 152 (2007), pp. 35-46
[88.]
S. Martínez-Calvillo, J.C. Vizuet-de-Rueda, L.E. Florencio-Martínez, R.G. Manning-Cela, E.E. Figueroa-Angulo.
Gene expression in trypanosomatid parasites.
J Biomed Biotechnol, (2010),
[89.]
M.J. Ayub, J. Atwood, A. Nuccio, R. Tarleton, M.J. Levin.
Proteomic analysis of the Trypanosoma cruzi ribosomal proteins.
Biochem Biophys Res Commun, 382 (2009), pp. 30-34
[90.]
J. Telleria, D.G. Biron, J.P. Brizard, E. Demettre, M. Seveno, C. Barnabé, et al.
Phylogenetic character mapping of proteomic diversity shows high correlation with subspecific phylogenetic diversity in Trypanosoma cruzi.
Proc Natl Acad Sci USA, 107 (2010), pp. 20411-20416
[91.]
P. Cuervo, G.B. Domont, J.B. Jesus.
Proteomics of trypanosomatids of human medical importance.
J Proteomics, 73 (2010), pp. 845-867
[92.]
M.G.M. Teixeira, J. Borges-Pereira, E. Netizert, M.L.N.X. Souza, J.M. Peralta.
Development and evaluation of an enzyme-linked immunotransfer blot technique for serodiagnosis of Chagas disease.
Trop Med Parasitol, 45 (1994), pp. 308-312
[93.]
L.H.G. Freitas-Júnior, M.R.S. Briones, S. Schenkman.
Two distincts groups of mucin-like genes are differentialy expressed in the developmental stages of Trypanosoma cruzi.
Mol Biochem Parasitol, 93 (1998), pp. 101-114
[94.]
P.M. Grandgenett, B.C. Coughlin, L.V. Kirchhoff, J.E. Donelson.
Differential expression of GP63 genes in Trypanosoma cruzi.
Mol Biochem Parasitol, 110 (2000), pp. 409-415
[95.]
A.R. Ávila, S.F. Yamada-Ogatta, V. Silva-Monteiro, M.A. Krieger, C.V. Nakamura, W. De Souza, et al.
Cloning and characterization of the metacyclogenin gene, which is specifically expressed during Trypanosoma cruzi metacyclogenesis.
Mol Biochem Parasitol, 117 (2001), pp. 169-177
[96.]
V.T. Contreras, C.M. Morel, S. Goldenberg.
Stage specific gene expression precedes morphological changes during Trypanosoma cruzi metacyclogenesis.
Mol Biochem Parasitol, 14 (1985), pp. 83-96
[97.]
S. Goldenberg, J.M. Salles, V.T. Contreras, M.P. Lima-Franco, A.M. Katzin, W. Colli, et al.
Characterization of messenger RNA from epimastigotes and metacyclic trypomastigotes of Trypanosoma cruzi.
FEBS Lett, 180 (1985), pp. 265-270
[98.]
M.A. Krieger, A.R. Avila, S.F. Ogatta, C. Plazanet-Menut, S. Goldenberg.
Differential gene expression during Trypanosoma cruzi metacyclogenesis.
Mem Inst Oswaldo Cruz, 94 (1999), pp. 165-168
[99.]
A.R. Ávila, B. Dallagiovanna, S.F. Yamada-Ogatta, V. Monteiro-Goes, S.P. Fragoso, M.A. Krieger, et al.
Stage-specific gene expression during Trypanosoma cruzi metacyclogenesis.
Genet Mol Res, 2 (2003), pp. 159-168
[100.]
I. Neira, F.A. Silva, M. Cortez, N. Yoshida.
Involvement of Trypanosoma cruzi metacyclic trypomastigote surface molecule gp82 in adhesion to gastric mucin and invasion of epithelial cells.
Infect Immun, 71 (2003), pp. 557-561
[101.]
N.W. Andrews.
Lysosomes and the plasma membrane: trypanosomes reveal a secret relationship.
J Biol Chem, 158 (2002), pp. 389-394
[102.]
A. Parodi-Talice, V. Monteiro-Goes, N. Arrambide, A.R. Avila, R. Duran, A. Correa, et al.
Proteomic analysis of metacyclic trypomastigotes undergoing Trypanosoma cruzi metacyclogenesis.
J Mass Spectrom, 42 (2007), pp. 1422-1432
[103.]
W. d e Souza.
From the cell biology to the development of new chemotherapeutic approaches against trypanosomatids: dreams and reality.
Kinetoplastid Biol Dis, 1 (2002), pp. 3
[104.]
M.N. Soeiro, S.L. De Castro.
Trypanosoma cruzi targets for new chemotherapeutic approaches.
Expert Opin Ther Targets, 13 (2009), pp. 105-121
[105.]
J.R. Coura, S.L. De Castro.
A critical review on Chagas’ disease chemotherapy.
Mem Inst Oswaldo Cruz, 97 (2002), pp. 3-24
[106.]
Guedes PMM, Fietto JLR, Lana M, Bahia, M T. Advances in Chagas Disease Chemotherapy. Anti-Infective Agents. In: Medicinal Chemistry (Formerly Current Medicinal Chemistry - Anti-Infective Agents); 2006.
[107.]
J. Jannin, L. Villa.
An overview of Chagas’ disease treatment.
Mem Inst Oswaldo Cruz, 102 (2007), pp. 95-97
[108.]
R.F.S. Menna-Barreto, D.G. Beghini, A.T.S. Ferreira, A.V. Pinto, S.L. De Castro, J. Perales.
A proteomic analysis of the mechanism of action of naphthoimidazoles in Trypanosoma cruzi epimastigotes in vitro.
J Proteomics, 73 (2010), pp. 2306-2315
[109.]
N. Nitz, C. Gomes, R.A. De Cassia, M.R. D'Souza-Ault, F. Moreno, L. Lauria--Pires, et al.
Heritable integration of kDNA minicircle sequences from Trypanosoma cruzi into the avian genome: insights into human Chagas’ disease.
[110.]
M.M. Hecht, N. Nitz, P.F. Araujo, A.O. Sousa, A.C. Rosa, D.A. Gomes, et al.
Inheritance of DNA transferred from American trypanosomes to human hosts.
Copyright © 2012. Asociación Colombiana de Infectología (ACIN)
Opciones de artículo