covid
Buscar en
Inmunología
Toda la web
Inicio Inmunología The renaissance of T regulatory cells: Looking for markers in a haystack
Información de la revista
Vol. 26. Núm. 2.
Páginas 100-107 (abril - junio 2007)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 26. Núm. 2.
Páginas 100-107 (abril - junio 2007)
Acceso a texto completo
The renaissance of T regulatory cells: Looking for markers in a haystack
El renacimiento de las células t reguladoras: buscando marcadores en un pajar
Visitas
2420
E. Pini, G. Ojeda, P. Portolés
Autor para correspondencia
pportols@isciii.es

Correspondence to: Unidad de Inmunología Celular; Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo km 2, Majadahonda, 28220 Majadahonda, Madrid
Unidad de Inmunología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid
Este artículo ha recibido
Información del artículo
Resumen

Un tema básico en la Inmunología es cómo el Sistema Inmunitario puede proteger al huésped frente a una extraordinaria variedad de organismos patógenos al mismo tiempo que controla esas respuestas para que su duración o intensidad no sean perjudiciales para el organismo. Desde hace varios años se han acumulado los datos que subrayan la importancia de linfocitos T diferenciados en el timo, denominados linfocitos T reguladores (Treg), en la supresión de las respuestas inmunitarias normales y patológicas, contribuyendo a la tolerancia a los elementos propios y a la homeostasis inmune. Su papel en el control de la respuesta inmunitaria frente a tumores, alergenos, patógenos e injertos alogeneicos ha llamado la atención hacia su potencial uso terapéutico. Sin embargo, para que este potencial pueda convertirse en realidad es precisa una buena caracterización fenotípica y funcional de esta subpoblación, una tarea que se ha comprobado dificultosa. Así, todavía no están claros muchos puntos acerca de los genes diferenciadores maestros de este linaje celular, sus marcadores de superficie específicos, o sus mecanismos de supresión.

En dos trabajos muy recientes se han descrito las nucleotidasas CD39 y CD73 como marcadores de superficie de las células Treg, lo que permite unir la actividad supresora de estas células con modelos previos de inmunosupresión en los cuales la adenosina y el AMP cíclico tenían un papel funcional primordial.

Palabras clave:
Linfocitos T reguladores
Treg
Nucleotidasas
CD39
CD37
Adenosina
cAMP
Abstract

A key issue in Immunology is how the Immune System manages to achieve its major aim of protecting the host against an extraordinary variety of pathogens while, at the same time, controlling responses whose perduration and intensity might be harmful to the organism. For some years now, evidence has come out of the importance of a thymus-derived T cell subpopulation, called “regulatory” (Treg), able of suppressing physiological and pathological responses, contributing to self tolerance and immune homeostasis. Its role in controlling immune response to tumours, allergens, pathogens and allogeneic grafts has driven the attention towards its therapeutic potential. However, to develop this therapeutic potential to the full a good phenotypical and functional characterization of this subpopulation is necessary, a task that has proven difficult. Thus, many factors still remain obscure concerning the master differentiation genes of these cells, the specificity of their surface markers, or their suppressor mechanisms.

In two recent papers, the nucleotidases CD39 and CD73 have been described as T regulatory cell surface markers, linking the suppressive activity of these cells with previous immunosuppressor models in which adenosine and cAMP had functional relevance for cellular immunoregulation.

Key words:
T regulatory cells
Treg
Nucleotidases
CD39
CD37
Adenosine
cAMP
El Texto completo está disponible en PDF
References
[1.]
R.K. Gershon, K. Kondo.
Cell interactions in the induction of tolerance: The role of thymic lymphocytes.
Immunology, 18 (1970), pp. 723-737
[2.]
H. Cantor.
Reviving suppression?.
Nat Immunol, 5 (2004), pp. 347-349
[3.]
S. Sakaguchi, N. Sakaguchi, M. Asano, M. Itoh, M. Toda.
Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.
J Immunol, 155 (1995), pp. 1151-1164
[4.]
P. McGuirk, K.H.G. Mills.
Pathogen-specific regulatory T cells provoke a shift in the Th1/Th2 paradigm in immunity to infectious diseases.
Trends Immunol, 23 (2002), pp. 450-455
[5.]
M.A. Curroto de Lafaille, J.J. Lafaille.
CD4+ regulatory T cells in autoimmunity and allergy.
Curr Opinion Immunol, 14 (2002), pp. 771-778
[6.]
M.K. Levings, R. Sangregorio, C. Sartirana, A.L. Moschin, M. Battaglia, P.C. Orban, et al.
Human CD25+CD4+ T suppressor cell clones produce transforming growth factor beta, but not interleukin 10, and are distinct from type 1 T regulatory cells.
J Exp Med, 196 (2002), pp. 1335-1346
[7.]
H. Fukaura, S.C. Kent, M.J. Pietrusewicz, S.J. Khoury, H.L. Weiner, D.A. Hafler.
Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-beta1- secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients.
J Clin Invest, 98 (1996), pp. 70-77
[8.]
J. Inobe, A.J. Slavin, Y. Komagata, Y. Chen, L. Liu, H.L. Weiner.
IL-4 is a differentiation factor for transforming growth factor-beta secreting Th3 cells and oral administration of IL-4 enhances oral tolerance in experimental allergic encephalomyelitis.
[9.]
S. Sakaguchi.
Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses.
Annu Rev Immunol, 22 (2004), pp. 531-562
[10.]
S. Hori, T. Nomura, S. Sakaguchi.
Control of regulatory T cell development by the transcription factor Foxp3.
Science, 299 (2003), pp. 1057-1061
[11.]
J.D. Fontenot, J.P. Rasmussen, L.M. Williams, J.L. Dooley, A.G. Farr, A.Y. Rudensky.
Regulatory T cell lineage specification by the forkhead transcription factor foxp3.
Immunity, 22 (2005), pp. 329-341
[12.]
M.A. Gavin, J.P. Rasmussen, J.D. Fontenot, V. Vasta, V.C. Manganiello, J.A. Beavo, et al.
Foxp3-dependent programme of regulatory T-cell differentiation.
Nature, 445 (2007), pp. 771-775
[13.]
Y. Zheng, A.Y. Rudensky.
Foxp3 in control of the regulatory T cell lineage.
Nat Immunol, 8 (2007), pp. 457-462
[14.]
Y. Wu, M. Borde, V. Heissmeyer, M. Feuerer, A.D. Lapan, J.C. Stroud, et al.
FOXP3 controls regulatory T cell function through cooperation with NFAT.
[15.]
R. Khattri, T. Cox, S.A. Yasayko, F. Ramsdell.
An essential role for Scurfin in CD4+CD25+ T regulatory cells.
Nat Immunol, 4 (2003), pp. 337-342
[16.]
J.D. Fontenot, M.A. Gavin, A.Y. Rudensky.
Foxp3 programs the development and function of CD4+CD25+ regulatory T cells.
Nat Immunol, 4 (2003), pp. 330-336
[17.]
P.Y. Mantel, N. Ouaked, B. Ruckert, C. Karagiannidis, R. Welz, K. Blaser, et al.
Molecular mechanisms underlying FOXP3 induction in human T cells.
J Immunol, 176 (2006), pp. 3593-3602
[18.]
M.R. Walker, D.J. Kasprowicz, V.H. Gersuk, A. Benard, M. Van Landeghen, J.H. Buckner, S.F. Ziegler.
Induction of FoxP3 and acquisition of T regulatoy activiy by stimulated human CD4+CD25– T cells.
J Clin Invest, 112 (2003), pp. 1437-1443
[19.]
L. Zhao, L. Sun, H. Wang, H. Ma, G. Liu, Y. Zhao.
Changes of CD4+CD25+Foxp3+ regulatory T cells in aged BALB/c mice.
J Leukoc Biol, 81 (2007), pp. 1386-1394
[20.]
M. Miyara, S. Sakaguchi.
Natural regulatory T cells: Mechanisms of suppression.
Trends Mol Med, 13 (2007), pp. 108-116
[21.]
E.M. Shevach, G.L. Stephens.
The GITR-GITRL interaction: Costimulation or contrasuppression of regulatory activity?.
Nat Rev Immunol, 6 (2006), pp. 613-618
[22.]
R.S. McHugh, M.J. Whitters, C.A. Piccirillo, D.A. Young, E.M. Shevach, M. Collins, et al.
CD4+CD25+ immunoregulatory T cells: Gene expression analysis reveals a functional role for the glucocorticoidinduced TNF receptor.
Immunity, 16 (2002), pp. 311-323
[23.]
J. Shimizu, S. Yamazaki, T. Takahashi, Y. Ishida, S. Sakaguchi.
Stimulation of CD4+CD25+ regulatory T cells through GITR breaks immunological self-tolerance.
Nat Immunol, 3 (2002), pp. 135-142
[24.]
I. Caramalho, T. Lopes-Carvalho, D. Ostler, S. Zelenay, M. Haury, J. Demengeot, Regulatory T.
cells selectively express toll-like receptors and are activated by lipopolysaccharide.
J Exp Med, 197 (2003), pp. 403-411
[25.]
D. Bruder, M. Probst-Kepper, A.M. Westendorf, R. Geffers, S. Beissert, K. Loser, et al.
Neuropilin-1: A surface marker of regulatory T cells.
Eur J Immunol, 34 (2004), pp. 623-630
[26.]
H.W. Lim, P. Hillsamer, C.H. Kim, Regulatory T.
cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GCTh cell-driven B cell responses.
J Clin Invest, 114 (2004), pp. 1640-1649
[27.]
J. Lehmann, J. Huehn, M. de la Rosa, F. Maszyna, U. Kretschmer, V. Krenn, et al.
Expression of the integrin alpha E‚7 identifies unique subsets of CD25+ as well as CD25– regulatory T cells.
Proc Natl Acad Sci USA, 99 (2002), pp. 13031-13036
[28.]
A. Iellem, M. Mariani, R. Lang, H. Recalde, P. Panina-Bordignon, F. Sinigaglia, et al.
Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4+CD25+ regulatory T cells.
J Exp Med, 194 (2001), pp. 847-854
[29.]
B. Salomon, D.J. Lenschow, L. Rhee, N. Ashourian, B. Singh, A. Sharpe, et al.
B7/CD28 Costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes.
Immunity, 12 (2000), pp. 431-440
[30.]
C.R. Ruprecht, M. Gattorno, F. Ferlito, A. Gregorio, A. Martini, A. Lanzavecchia, et al.
Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in inflamed synovia.
J Exp Med, 201 (2005), pp. 1793-1803
[31.]
W. Liu, A.L. Putnam, Z. Xu-yu, G.L. Szot, M.R. Lee, S. Zhu, et al.
CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells.
J Exp Med, 203 (2006), pp. 1701-1711
[32.]
S. Sakaguchi.
Control of immune responses by naturally arising CD4+ regulatory T cells that express toll-like receptors.
J Exp Med, 197 (2003), pp. 397-401
[33.]
Y. Belkaid, C.A. Piccirillo, S. Mendez, E.M. Shevach, D.L. Sacks.
CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity.
Nature, 420 (2002), pp. 502-507
[34.]
S. Deaglio, K.M. Dwyer, W. Gao, D. Friedman, A. Usheva, A. Erat, et al.
Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression.
J Exp Med, 204 (2007), pp. 1257-1265
[35.]
A.M. Thornton, E.M. Shevach.
Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific.
J Immunol, 164 (2000), pp. 183-190
[36.]
M. Karim, G. Feng, K.J. Wood, A.R. Bushell.
CD4+CD25+ regulatory T cells generated by exposure to a model protein antigen prevent allograft rejection: Antigen-specific reactivation in vivo is critical for bystander regulation.
Blood, 105 (2005), pp. 4871-4877
[37.]
T. Takahashi, Y. Kuniyasu, M. Toda, N. Sakaguchi, M. Itoh, M. Iwata, et al.
Immunologic self-tolerance maintained by CD4+CD25+ naturally anergic and suppressive T cells: Induction of autoimmune disease by breaking their anergic/suppressive state.
Int Immunol, 10 (1998), pp. 1969-1980
[38.]
A.M. Thornton, E.M. Shevach.
CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting Interleukin 2 production.
J Exp Med, 188 (1998), pp. 287-296
[39.]
F. Fallarino, U. Grohmann, S. You, B.C. McGrath, D.R. Cavener, C. Vacca, et al.
The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells.
J Immunol, 176 (2006), pp. 6752-6761
[40.]
J.D. Fontenot, A.Y. Rudensky.
A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3.
Nat Immunol, 6 (2005), pp. 331-337
[41.]
T. Bopp, C. Becker, M. Klein, S. Klein-Hessling, A. Palmetshofer, E. Serfling, et al.
Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression.
J Exp Med, 204 (2007), pp. 1303-1310
[42.]
M.V. Sitkovsky, A. Ohta.
The’danger’ sensors that STOP the immune response: The A2 adenosine receptors?.
Trends Immunol, 26 (2005), pp. 299-304
[43.]
S. Huang, S. Apasov, M. Koshiba, M. Sitkovsky.
Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion.
Blood, 90 (1997), pp. 1600-1610
[44.]
J.M. Armstrong, J.F. Chen, M.A. Schwarzschild, S. Apasov, P.T. Smith, C. Caldwell, et al.
Gene dose effect reveals no Gs-coupled A2A adenosine receptor reserve in murine T-lymphocytes: Studies of cells from A2A-receptor-gene-deficient mice.
Biochem J, 354 (2001), pp. 123-130
[45.]
A. Ohta, M. Sitkovsky.
Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage.
Nature, 414 (2001), pp. 916-920
[46.]
A. Ohta, E. Gorelik, S.J. Prasad, F. Ronchese, D. Lukashev, M.K. Wong, et al.
A2A adenosine receptor protects tumors from antitumor T cells.
Proc Natl Acad Sci USA, 103 (2006), pp. 13132-13137
[47.]
M. Naganuma, E.B. Wiznerowicz, C.M. Lappas, J. Linden, M.T. Worthington, P.B. Ernst.
Cutting edge: Critical role for A2A adenosine receptors in the T cell-mediated regulation of colitis.
J Immunol, 177 (2006), pp. 2765-2769
[48.]
R. Resta, Y. Yamashita, L.F. Thompson.
Ecto-enzyme and signaling functions of lymphocyte CD73.
Immunol Rev, 161 (1998), pp. 95-109
[49.]
J.J. Kobie, P.R. Shah, L. Yang, J.A. Rebhahn, D.J. Fowell, T.R. Mosmann.
T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5’-adenosine monophosphate to adenosine.
J Immunol, 177 (2006), pp. 6780-6786
[50.]
A.A. Erdmann, Z.G. Gao, U. Jung, J. Foley, T. Borenstein, K.A. Jacobson, et al.
Activation of Th1 and Tc1 cell adenosine A2A receptors directly inhibits IL-2 secretion in vitro and IL-2-driven expansion in vivo.
Blood, 105 (2005), pp. 4707-4714
[51.]
J. Bodor, L. Feigenbaum, J. Bodorova, C. Bare, M.S. Reitz Jr., R.E. Gress.
Suppression of T-cell responsiveness by inducible cAMP early repressor (ICER).
J Leukoc Biol, 69 (2001), pp. 1053-1059
[52.]
M.V. Sitkovsky, D. Lukashev, S. Apasov, H. Kojima, M. Koshiba, C. Caldwell, et al.
Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors.
Annu Rev Immunol, 22 (2004), pp. 657-682
Copyright © 2007. Sociedad Española de Inmunología
Descargar PDF
Opciones de artículo