Varios estudios han analizado la influencia de factores meteorológicos y geográficos en la incidencia de COVID-19. La estacionalidad podría tener importancia en la transmisión de SARS-CoV-2. Nuestro estudio evalúa el patrón geográfico de la COVID-19 en España y su relación con las distintas variables meteorológicas.
MétodosEstudio ecológico a escala provincial que analiza la influencia de factores meteorológicos y geográficos en la incidencia acumulada de COVID-19 en las 52 provincias españolas (24 costeras y 28 del interior) durante las tres primeras olas. La incidencia acumulada se calculó con los datos del Instituto Nacional de Estadística (INE) y la Red Nacional de Vigilancia Epidemiológica (RENAVE), las variables meteorológicas se obtuvieron de la Agencia Estatal de Meteorología (AEMET).
ResultadosLa incidencia acumulada total, en los tres periodos, fue menor en las provincias costeras que en las del interior (566±181 vs. 782±154; p=2,5×10-5). La incidencia acumulada correlacionó negativamente con la temperatura media (r=-0,49; p=2,2×10-4) y las precipitaciones (r=-0,33; p=0,01), y positivamente con la altitud (r=0,56; p=1,4×10-5). Las provincias españolas con una temperatura media <10°C tuvieron casi el doble de incidencia acumulada que las provincias con temperaturas >16°C. La temperatura media y las precipitaciones fueron las variables asociadas con la incidencia acumulada provincial de COVID-19, con independencia de otros factores (Coeficiente Beta de -0,62; p=3,7×10-7 y -0,47; p=4,2x10-5, respectivamente).
ConclusionesLos factores meteorológicos y geográficos podrían influir en la evolución de la pandemia en España. El reconocimiento de la estacionalidad del COVID-19 ayudaría a predecir nuevas olas.
Several studies have analyzed the influence of meteorological and geographical factors on the incidence of COVID-19. Seasonality could be important in the transmission of SARS-CoV-2. This study aims to evaluate the geographical pattern of COVID-19 in Spain and its relationship with different meteorological variables.
MethodsA provincial ecological study analyzing the influence of meteorological and geographical factors on the cumulative incidence of COVID-19 in the 52 (24 coastal and 28 inland) Spanish provinces during the first three waves was carried out. The cumulative incidence was calculated with data from the National Statistical Institute (INE) and the National Epidemiological Surveillance Network (RENAVE), while the meteorological variables were obtained from the Spanish Meteorological Agency (AEMET).
ResultsThe total cumulative incidence, in all three waves, was lower in the coastal provinces than in the inland ones (566±181 vs. 782±154; p=2.5×10−5). The cumulative incidence correlated negatively with mean air temperature (r=−0.49; p=2.2×10−4) and rainfall (r=−0.33; p=0.01), and positively with altitude (r=0.56; p=1. 4×10−5). The Spanish provinces with an average temperature <10°C had almost twice the cumulative incidence than the provinces with temperatures >16°C. The mean air temperature and rainfall were associated with the cumulative incidence of COVID-19, regardless of other factors (Beta Coefficient of −0.62; p=3.7×10−7 and −0.47; p=4.2×10–5 respectively).
ConclusionsMeteorological and geographical factors could influence the evolution of the pandemic in Spain. Knowledge regarding the seasonality of the virus would help to predict new waves of COVID-19 infections.
Varios estudios han analizado la influencia de los factores climáticos y geográficos en la incidencia de la COVID-191–4. La estacionalidad, descrita para otros virus respiratorios5,6, podrÃa tener importancia en la transmisión de SARS-CoV-27–10. Este patrón temporal parece atribuirse más a factores ambientales que a cambios en la composición genómica del virus11. Las variables meteorológicas podrÃan ser responsables de las diferencias encontradas en la incidencia de SARS-CoV-23,4. De hecho, cambios en la temperatura afectan a la viabilidad de los virus12, alteran la barrera mucociliar y modifican la respuesta inmune, innata y adaptativa, del huésped13. La transmisión del SARS-CoV-2 parece disminuir en condiciones cálidas y húmedas, mientras que aumenta con el aire frÃo y seco14,8.
España es uno de los paÃses europeos más afectados por la pandemia con más de 3.780.000 infectados y 80.750 fallecidos (Junio de 2021). El Estudio Nacional de Sero-EpidemiologÃa sobre la infección por SARS-CoV-2 (ENE-COVID), realizado entre el 27 de abril y el 11 de mayo de 2020 en 61.000 personas de 35.883 hogares españoles, mostró claras diferencias geográficas en la tasa de seroprevalencia, con una menor inmunización en las zonas costeras (< 3%), frente a zonas próximas a Madrid (> 10%)15. Este hecho parecÃa traducir diferencias geográficas en la incidencia de COVID-19 entre regiones costeras y del interior peninsular. Por ello, en nuestro estudio nos planteamos como objetivo realizar un análisis espacial de la incidencia acumulada de COVID-19 en las diferentes regiones españolas, determinando la influencia del factor geográfico costa/interior y del tiempo atmosférico en la propagación del SARS-CoV-2.
MétodosEstudio ecológico a escala provincial realizado durante tres periodos definidos por los picos de incidencia de la COVID-19 en España. El primer periodo fue de marzo a mayo de 2020, el segundo de septiembre a noviembre de 2020 y el tercero de diciembre a febrero de 2021. Se obtuvieron datos demográficos del INE (Instituto Nacional de EstadÃstica) del número de habitantes en cada una de las 52 provincias y de la densidad de población provincial (habitantes/km2).
Datos meteorológicosLas variables meteorológicas se obtuvieron de la Agencia Española de MeteorologÃa (AEMET) correspondientes a 870 estaciones meteorológicas a escala mensual. En cada provincia se promediaron los datos de todas las estaciones situadas en la misma. Las variables analizadas fueron la temperatura media en grados Celsius (°C), la humedad relativa como relación porcentual (%) entre la cantidad de vapor de agua que contiene el aire y la máxima cantidad que puede contener a una determinada presión y temperatura, la precipitación medida en milÃmetros de altura de agua caÃda (mm), la velocidad del viento (km/h), el porcentaje de calma del viento (porcentaje de dÃas del mes en las que hubo ausencia de viento con dirección concreta) y la altitud provincial en metros (m).
Datos de incidencia de COVID-19Los casos detectados en cada provincia se obtuvieron a partir de la Red Nacional de Vigilancia Epidemiológica (RENAVE) a través de la plataforma informática vÃa Web SiViES (Sistema de Vigilancia de España) que gestiona el Centro Nacional de EpidemiologÃa (CNE). Para el cálculo de la incidencia acumulada se utilizó la fecha de inicio de los sÃntomas o, en su defecto, la fecha de diagnóstico menos seis dÃas (desde el inicio de la pandemia hasta el 10 de mayo) o menos tres dÃas (a partir del 11 de mayo). Para los casos asintomáticos se utilizó la fecha del diagnóstico. Hasta el 10 de mayo de 2020, se incluyeron casos diagnosticados por una prueba diagnóstica positiva de infección activa, asà como todos aquellos casos hospitalizados, ingresados en la unidad de cuidados intensivos (UCI) y defunciones; a partir del 11 de mayo de 2020 se pasaron a incluir solo los casos confirmados por reacción en cadena de la polimerasa (PCR), o por pruebas de antÃgeno.
La población provincial utilizada para el cálculo de la tasa de incidencia procede de las cifras oficiales de población resultantes de la revisión del padrón municipal al 1 de enero del INE de 2019. Para calcular la incidencia acumulada (IA) por provincias en cada uno de los meses del estudio se estimaron los casos nuevos, en el periodo de tiempo definido, entre la población de riesgo (población de la provincia).
El análisis de los datos se realizó en las 52 provincias españolas, 24 provincias costeras con salida al mar y 28 del interior (Anexo 1) para cada uno de los periodos y para el total (media de los tres periodos). Para la publicación de este trabajo se han seguido las recomendaciones de la guÃa STROBE16.
Análisis estadÃsticoLos datos se expresaron con la media y desviación estándar (DE). Se analizó la distribución de las variables cuantitativas con el test de Kolmogorov-Smirnov. Para la comparación de variables cuantitativas se utilizó la T de Student o el test de Mann-Whitney y para variables cualitativas la prueba de Chi2 o Test de Fisher. Para estudiar la relación entre variables cuantitativas se empleó la correlación de Pearson o Spearman (Rho). Se realizó un análisis de regresión lineal múltiple univariante y multivariante. Para las pruebas de contraste de hipótesis, se consideró un valor de p<0,05 estadÃsticamente significativo.Todos los datos fueron analizados con el programa estadÃstico SPSS (Stadistical Package for Social Sciences, Chicago, IL, EE. UU.).
ResultadosLa población española (47.026.208 habitantes; 51% mujeres y 49% hombres) está repartida en 52 provincias, 24 costeras (con salida al mar) y 28 del interior peninsular (Anexo 1). Las provincias costeras registraron una menor IA de COVID-19 a pesar de tener mayor densidad de población. La IA en el primer periodo (marzo-mayo) fue de 89 (61) casos en las provincias costeras y 251 (138) en las del interior (p=8,0x10-5). En el segundo periodo (septiembre-noviembre) de 696 (341) y 1.027 (271) casos, respectivamente (p=4,0x10-4), y en el tercer periodo (diciembre-febrero) de 913 (390) frente a 1.069 (319) casos (p=0,09). En la tabla 1 se muestran los datos de la IA por periodos y meses. La distribución geográfica de la IA en los tres periodos, por provincias, se muestra en la figura 1.
Incidencia acumulada en las provincias costeras y de interior
 | Provincias costeras | Provincias interior | p |
---|---|---|---|
 | n=24 | n=28 |  |
Población provincias | 1.172.472 (1.103.488)Mediana 982.732 | 674.531(1.229.133)Mediana 372.562 | 0,0003* |
Población capitales de provincias | 330.453(350.285)Mediana 202.922 | 277.068 (608.183)Mediana 118.651 | 0,70 |
Densidad población (hab/km2) | 210 (165) | 67 (153) | 5,6x10-7* |
Altitud provincial metros | 289 (161) | 743 (229) | 4,5x10-8* |
IA Primer periodo | |||
Marzo | 177 (102) | 503 (315) | 1,5x10-5* |
Abril | 75 (71) | 209 (105) | 1,1x10-5* |
Mayo | 14 (18) | 41 (28) | 7,3x10-4* |
Total | 89 (61) | 251 (138) | 8,0x10-5* |
IA Segundo periodo | |||
Septiembre | 399 (195) | 773 (307) | 2,1x10-5* |
Octubre | 903 (611) | 1.347 (430) | 0,001* |
Noviembre | 785 (325) | 962 (342) | 0,064 |
Total | 696 (341) | 1.027 (271) | 4,0x10-4* |
IA Tercer periodo | |||
Diciembre | 571 (289) | 570 (234) | 0,99 |
Enero | 1.668 (911) | 2.113 (789) | 0,06 |
Febrero | 500 (182) | 525 (227) | 0,66 |
Total | 913 (390) | 1.069 (319) | 0,09 |
Media y desviación estándar (DE). IA: incidencia acumulada.
La IA total fue también menor en las provincias costeras (566±181 casos, frente a 782±154 en el interior; p=2,5x10-5) (fig. 2). Las Palmas de Gran Canaria, Santa Cruz de Tenerife y Lugo fueron las provincias con menor IA total (173, 177 y 344 casos), mientras que Palencia, Cuenca y Teruel fueron las de mayor IA total (1.143, 1.018 y 981, respectivamente). Por debajo de la mediana de IA total (691 casos), el 69% fueron provincias costeras, mientras que por encima el 77% fueron del interior.
En cuanto a los factores meteorológicos, las provincias costeras tuvieron, respecto a las del interior, mayor temperatura media en los tres periodos (2,2°C en el primer periodo, 3,3°C en el segundo y 5°C en el tercero) y también mayor humedad relativa en los dos primeros periodos (3% y 4%, respectivamente) (tabla 2). El resto de las variables meteorológicas estudiadas, precipitaciones, velocidad del viento y porcentaje de calma, no mostraron diferencias significativas.
Factores meteorológicos en las provincias costeras y del interior por periodos
 | Provincias costerasn=24 | Provincias interiorn=28 | p |
---|---|---|---|
Temperatura media °C: | |||
1PÂ | 15,4 (1,7)Â | 13,2 (1,7)Â | 1,9x10-5*Â |
2PÂ | 17,5 (2,4)Â | 14,2 (2,2)Â | 3,5x10-6*Â |
3PÂ | 10,8 (2,5)Â | 6,4 (1,8)Â | 1,1x10-7*Â |
Total | 14,5 (2,1) | 11,2 (1,8) | 3,0x10-6* |
Humedad relativa % | |||
1PÂ | 70 (5)Â | 67 (3)Â | 0,005**Â |
2PÂ | 70 (6)Â | 66 (5)Â | 0,01**Â |
3PÂ | 73 (7)Â | 78 (3)Â | 0,14Â |
Total | 71 (6) | 70 (3) | 0,49 |
Media y desviación estándar (DE).
La IA total provincial, en los tres periodos, correlacionó negativamente con la temperatura media registrada en las provincias (r de Pearson: -0,51;p=8,0x10-5). La temperatura media fue capaz de explicar el 26% de la variabilidad total de la IA en los tres periodos (R2 lineal: 0,26).
La IA total también correlacionó negativamente con las precipitaciones (r de Pearson: -0,34; p=0,01) y positivamente con la altitud (r de Pearson: 0,52; p=0,0007). El resto de variables estudiadas (humedad, velocidad del viento y porcentaje de calma) no mostraron correlación.
Los cambios en la IA total en relación con los cambios de la temperatura se muestran en la figura 3. Las provincias con una temperatura media <10°C registraron casi el doble de IA total que las provincias con temperaturas>16°C.
El análisis de regresión lineal univariante mostró que la localización de la provincia (costa/interior), la altitud, la temperatura media y las precipitaciones se asociaban con la IA total provincial (tabla 3). El análisis de regresión lineal multivariante (variable dependiente la IA total; variables independientes las que mostraron significación estadÃstica en el univariante) reveló una relación negativa independiente de la temperatura media y las precipitaciones con la IA de COVID-19 (tabla 3). Los coeficientes beta estandarizados para la temperatura media y las precipitaciones fueron de -0,62 y -0,47, respectivamente.
Análisis de regresión lineal univariante y multivariante. Variable dependiente: incidencia acumulada en los tres periodos
 | UnivarianteCoeficiente Beta no estandarizado(IC 95%) p | MultivarianteCoeficiente Beta no estandarizado*(IC 95%) p |
---|---|---|
Provincia(costa/interior) | 216 (122–310)p=2,5x10-5 | - |
Altitud provincial (m) | 0,3 (0,1–0,5)p=7,4x10-5 | - |
Densidad población (hab/km2) | -0,24 (-0,57-0,08)p=0,13 |  |
Temperatura media (°C) | -39 ([-57]–[-20])p=8,7x10-5 | -47 ([-63]–[-31])p=3,7x10-7 |
Humedad relativa (%) | -10 (-21–1,1)p=0,08 |  |
Precipitaciones (mm) | -1,7 ([-3,0]–[-0,3])p=1,0x10-2 | -2,4 ([-3,4]–[-1,3])p=4,2x10-5 |
Velocidad viento (km/h) | -2,4 (-32–27)p=0,86 |  |
% calma viento | -2,8 (-17–11,7)p=0,69 |  |
En nuestro estudio vemos una influencia de los factores meteorológicos y geográficos en la IA de COVID-19 en España. En concreto, la temperatura media influyó en la IA de COVID-19 en las provincias españolas, de tal manera que aquellas con temperaturas bajas tuvieron mayor IA, con independencia de otros factores estudiados, y a la inversa, las de mayor temperatura tuvieron menor incidencia. La influencia de la temperatura en la incidencia provincial es consistente, ya que se objetiva en las tres primeras olas registradas en nuestro paÃs y a lo largo además de diferentes estaciones (primavera, otoño e invierno). Comprobamos que las provincias con temperaturas medias inferiores a 10°C tuvieron el doble de incidencia acumulada que la registrada en las provincias con más de 16°C. Al igual que en nuestro trabajo, varios estudios encuentran que la temperatura podrÃa relacionarse con la incidencia de COVID-1917,18. Entre el 26 de enero y el 29 de febrero de 2020, se describió una correlación negativa entre IA y temperatura media en Wuhan (R2=0,126; p<0,05)19. Otro estudio en 166 paÃses (excluyendo China) encontró una reducción diaria del 3,08% en los casos de COVID-19 y del 1,19% en los fallecidos con el ascenso de 1°C en la temperatura20. En nuestro entorno, un estudio ecológico realizado en las comunidades autónomas españolas entre el 15 de marzo y el 22 de abril de 2020 describió una correlación negativa entre IA y temperatura media (r=-0,77; p<0,0001), de tal manera que un descenso del 10% en la temperatura media incrementó en un 14,6% la IA21. En EE.UU. el 90% de los casos de COVID-19 se han registrado en estados con temperaturas por debajo de 17°C22. Otros autores, sin embargo, no encuentran una relación23 o, al contrario, describen un incremento de casos con el aumento de la temperatura máxima24. Además, la relación entre temperatura e incidencia de COVID-19 podrÃa no ser lineal25. En nuestro trabajo establecemos una asociación negativa entre IA total y temperatura media, con un rango de temperaturas que va de 8,7°C a 19,0°C, por lo que no sabemos el efecto de temperaturas «más extremas» sobre la incidencia de COVID-19. Los cambios en la temperatura pueden afectar a la viabilidad del virus y a la respuesta inmune del individuo26,27. También la temperatura influye en los hábitos sociales, ya que con temperaturas bajas se favorece el encuentro en lugares cerrados, sin una correcta ventilación, lo que aumenta el riesgo de transmisión del SARS-CoV-228, mientras que con mejor temperatura se sale a espacios abiertos.
Las precipitaciones también influyeron en la IA provincial en nuestro estudio, de tal manera que aquellas provincias que registraron más precipitaciones (mm) fueron las de menor IA. La lluvia podrÃa contribuir a disminuir la polución del aire reduciendo asà la incidencia de COVID-1929. De hecho, la ausencia de lluvia se ha relacionado con un aumento de la incidencia de COVID-19 en paÃses cercanos (Italia)30. Otros trabajos, sin embargo, no describen una influencia de las precipitaciones en ciudades como Rio de Janeiro (abril de 2020)31 o Nueva York (marzo-abril de 2020)1. Las precipitaciones mantienen relación directa con la humedad relativa (de hecho en nuestro trabajo la correlación fue de 0,77), que también es un factor meteorológico relacionado con la transmisión de virus respiratorios32. Un porcentaje bajo de humedad en el aire (o sea aire seco y frio) podrÃa favorecer la persistencia de aerosoles e incrementar la incidencia de COVID-1933. La situación anticiclónica, seca a nivel atmosférico, que sufrió el suroeste de Europa en febrero de 2020 pudo generar condiciones que favorecieron en Italia y España la propagación rápida del virus al inicio de la pandemia34.
El incremento en la humedad relativa se ha relacionado con una reducción del 0,85% (95% CI: 0,51%-1,19%) de casos nuevos y 0,51% (95% CI: 0,34%, 0,67%) de fallecidos por la enfermedad20. Al igual que con la temperatura, la humedad podrÃa tener un «sweet point» para la transmisión del SARS-CoV-224. Un estudio en 206 regiones y paÃses del mundo encuentra que el 75% de los casos están en una franja de humedad absoluta de 5-10g/m24 al igual que el 90% de los casos en EE. UU. se describen en franjas de 4-9g/m22. Sin embargo, otros trabajos, al igual que el nuestro, no encuentran asociación35. Por otra parte, la velocidad del viento y las rachas de calma tampoco parecen influir en las diferencias geográficas encontradas. El viento se ha relacionado con la transmisión de COVID-19 al reducir la polución y la suspensión del SARS-CoV-2 en el aire36. Un estudio en Indonesia describe una correlación negativa entre viento e incidencia de COVID-19 (r=-0,31; p<0,05)37.
En nuestro estudio, la incidencia provincial de COVID-19 en España estuvo determinada, también, por factores geográficos, como la localización de la provincia y su altitud. Las provincias costeras, a pesar de tener una mayor densidad de población, tuvieron menor IA que las provincias del interior peninsular. Pensamos que este hecho está mediado por la temperatura, que fue mayor en las provincias costeras, ya que en último término fue el factor meteorológico que más claramente se asoció a la IA de COVID-19. De igual manera, vemos que las provincias con mayor altitud (las del interior peninsular) tuvieron mayor incidencia, pero de igual manera, el ascenso en altitud supone un descenso de la temperatura, por lo que en último término también la temperatura lo explicarÃa. Varios estudios relacionan la altitud con la incidencia y la mortalidad por COVID-1910,11,38, aunque otros trabajos no la describen39 o, al contrario, destacan una menor incidencia en poblaciones a mayor altura, debido quizás a la dificultad para el acceso a las mismas y a la menor densidad de población40. La hipoxia en altitud podrÃa condicionar también una menor expresión de enzima convertidora de la angiotensina 2 (ACE2), puerta de entrada del virus a la célul41 aunque los estudios al respecto son contradictorios42.
Nuestro trabajo tiene varias limitaciones al tratarse de un estudio ecológico, realizado a escala provincial. Además, aunque ajustamos por diferentes variables en el análisis multivariante, la asociación encontrada no presume causalidad. Por otra parte, no conocemos la influencia de otros factores ambientales, como la contaminación, que podrÃan afectar a la transmisión del virus43,44, o la radiación ultravioleta, que podrÃa tener efecto sobre el COVID-19, en parte mediado por la sÃntesis de vitamina D45. La vitamina D regula la expresión de numerosos genes implicados en la respuesta inmune y su deficiencia se ha relacionado con el desarrollo de infecciones respiratorias virales46 y de SARS-CoV-247,48.
En conclusión, consideramos que factores meteorológicos y geográficos podrÃan influir en la evolución de la pandemia en España, sobre todo debido a los cambios de temperatura. El reconocimiento de la estacionalidad del COVID-19 ayudarÃa a predecir nuevas olas y adaptar las campañas de prevención.
Agradecer el asesoramiento y colaboración del personal de AEMET- Cantabria.