covid
Buscar en
Progresos de Obstetricia y Ginecología
Toda la web
Inicio Progresos de Obstetricia y Ginecología Carcinogénesis genitomamaria
Información de la revista
Vol. 46. Núm. 11.
Páginas 502-511 (enero 2003)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 46. Núm. 11.
Páginas 502-511 (enero 2003)
Acceso a texto completo
Carcinogénesis genitomamaria
Genito-mammary carcinogenesis
Visitas
3975
M.T. Martína,*, J. Civettab
a Consultora de los Servicios de Ginecología y Oncología. Miembro del Comité de Tumores del Hospital J.R. Vidal. Corrientes
b Servicio de Cirugía Oncológica. Consultor del Servicio de Oncología. Miembro del Comité de Tumores del Hospital J.R. Vidal. Corrientes. Argentina
Este artículo ha recibido
Información del artículo
Resumen

Numerosos informes de investigadores demuestran que, en los mecanismos de la carcinogénesis del tracto genitomamario, participan eventos moleculares comunes a la carcinogénesis en general, tanto en las etapas de iniciación (alteraciones del genoma), como en la promoción y progresión (factores de crecimiento, enzimas que degradan las matrices, angiogénesis, etc.). No obstante, existen algunos aspectos particulares que son propios de determinadas localizaciones en los órganos del tema que nos ocupa.

Existen factores clínicos de riesgo en la carcinogénesis mamaria, como la obesidad, la diabetes, el estatus hormonal y la paridad, donde los investigadores han logrado desentrañar los mecanismos moleculares que participan en cada una de estas condiciones clínicas. En relación con la predisposición heredofamiliar, se destaca la mutación de los genes BRCA 1 y BRCA 2, que en su estado normal participan en la reparación del genoma dañado. La acción hormonal, especialmente de los estrógenos, se vincula a la transcripción de genes que codifican para factores de crecimiento. Se ha demostrado que algunos de estos factores y carcinógenos ambientales se excretan a través de la leche durante la lactación, pudiendo ocasionar daños genómicos en los ductos mamarios. En lo que respecta al cáncer cervical, la infección por el virus del papiloma humano, en sus tipos 16 y 18, representa un factor etiológico ampliamente reconocido. Las infecciones bacterianas del tracto genitourinario inducen a la formación de nitrosaminas, que representan un importante carcinógeno químico al igual que los metabolitos del tabaco.

En el cáncer de ovario esporádico se pudo constatar mayores mutaciones en los genes K-ras, erb-B2 y p53, en tanto que en los heredofamiliares predominan las mutaciones de los genes BRCA 1 y BRCA 2. La hormona foliculostimulante (como factor de crecimiento) se ha involucrado en la génesis de esta afección, por lo que podría significar un factor de riesgo en las terapias inductoras de ovulación.

El cáncer endometrial, en el 70% de los casos, es hormonodependiente, especialmente en mujeres jóvenes con niveles elevados d e receptores a estrógenos y a la hormona luteinizante/gonadotropina coriónica humana. El tamoxifeno ejercería su acción proliferativa (estrógeno-agonista), induciendo la expresión del gen C-fos. La escasa expresión de los gene supresores h.MLH1, p16 y PTEN, en estadios avanzados de endometriosis, representa un factor de riesgo para la transformación maligna. En cuanto al carcinoma de la vulva, existe una importante asociación con la presencia de tipos virales de AR del virus del papiloma humano, especialmente en mujeres jóvenes, en tanto que en las añosas, el liquen escleroso representa la enfermedad asociada con más frecuencia.

Palabras Clave:
Carcinogénesis del tracto genitomamario
Aspectos moleculares
Summary

In genital tract and mammary gland, many reports have demostrated that molecular changes took place as part of carcinogenic mechanisms, which are common with general carcinogenesis events, even in the initiation (genomic alterations), as well as in the promotion and progression steps (growth factors, matrix degradation enzymes, angiogenesis, etc.). Even though, there are some particular aspects that are specific for certain tissues, and we will try to describe them.

There are clinical risk factors in women breast carcinogenesis such as: obesity, diabetes, hormonal status and number of children, in which researches have elucidated the molecular events that participate in each one of these clinical conditions. Related to hereditary predisposition, it can be found mutations in BRCA 1 and BRCA 2 genes (which in normal status behave as part of the DNA damage reparation system). Hormonal action, specially estrogens activity, can be related to transcription of genes coding for growth factors. It has been demonstrated that growth factors and environmental carcinogens are secreted through maternal milk causing genomic damage in mammary ductus. In relation to cervical carcinoma, papilloma virus infection, especially types 16 and 18, are etiological agents widely recognized. Bacterial infections of female genital tract induce nitrosamines formation, which are chemical carcinogens as well as tobacco metabolites.

In sporadic ovarian cancer, it could be shown mutations in K-ras, erbB2 and p53 genes. On the other hand, familial carcinomas, predominantly exhibit mutations in BRCA1 and BRCA 2. Follicle stimulating hormone (FSH) (as a growth factor) has been involved in the initiation of pathology, hence, the use of ovulation induction therapies, may represent a risk factor.

Seventy percent of endometrial cancers are hormone dependent, specially youg women bearing high levels of estrogens and LH/hCG receptors. Tamoxifen acts as a growth promoter (estrogenagonist) inducing the expression of c-fos gene. The low expression of tumor supressor genes (hMLH1, p16 and PTEN) in advanced endometriosis represents a risk factor for malignant transformation. In relation to vulvar carcinoma, there are an association between high risk types of papillomavirus, especially in young women, whereas in older ones, the liquen sclerosus represents the most frequent associated pathology.

Key Words:
Carcinogenesis
Genital tract
Mammary gland
Molecular events
El Texto completo está disponible en PDF
Bibliografía
[1.]
G. Gray.
The underlying basis for obesity relationship to cancer.
J Nutr, pp. 132
[2.]
L. Hefler, et al.
Serum concentration of vascular endothelial growth factor in vulvar cancers.
Clin Cancer Res, pp. 2806-2809
[3.]
Y.U. Herbert, et al.
Role of the insulin-like growth factor family in cancer development amd progression.
J Matl Cancer Inst, 92 (2000), pp. 1472-1489
[4.]
C. Herman, et al.
Soybean phytoestrogens intake and cancer risk.
J Nutr, pp. 757-770
[5.]
X. Hu, et al.
Leptin a growth factor in normal and malignant breast cells and normal mammary gland development.
J Natl Cancer Inst, pp. 1704-1711
[6.]
B. Hulka, et al.
Breast cancer: hormones and other risk factors.
Maturitas,
[7.]
W.Y. Chen, et al.
Use of post menopausal hormones, alcohol and risk for invasive breast cancer.
Am Intern Med, pp. 798-804
[8.]
S. Hyder, et al.
Inhibition of progesterone induced VEGF production in human breast cancer cells by the pure antiestrogens ICI-182-780.
Cancer Lett, pp. 47-53
[9.]
S. Ip, et al.
Detection of human papillomavirus DNA in malignant lesions from chinese women with carcinomas of the upper genital tract.
Gynecol Oncol, pp. 104-111
[10.]
Q. Ji, et al.
Increased expression of human luteinizing hormone/hormone chorionic gonadotrophin receptor mRNA in human endometrial cancer.
Mol Cell Probes, pp. 269-275
[11.]
V. Jongen, et al.
The postmenopausal ovary as an androgen producing gland. Hypothesis on the etiology of endometrial cancer.
Maturitas, pp. 77
[12.]
E. Joura.
Epidemiology, diagnosis and treatment of vulvar intraephitelial neoplasia.
Curr Opin Obstet Gynecol, pp. 39-43
[13.]
M. Kanai, et al.
Immunohistochemical detection of six steroid receptors, cyclins and cyclin dependent kinases in normal and neoplastic squamous epithelia of the uterine cervix.
Cancer, 82 (1998), pp. 1709-1719
[14.]
H. Kawai, et al.
Directed interaction between BRAa 1 and estrogen receptor regulates vascular endothelial growth factor (VEGF) transcription and secretion in breast cancer cells.
Oncogenes, pp. 7730-7739
[15.]
Y. Kobayashi, et al.
Presence of human papillomavirus DNA in pelvic lymph nodes can predict unexpected recurrence of cervical cancer in patients with histologically negative lymph nodes.
Clin Cancer Res, pp. 979-983
[16.]
E. Korsching, et al.
Cytogenetic alterations and cytokercitin expression patterns in breast cancer: integrity a new model of breast differentiation into cytogenetic pathway of breast carcinogenesis.
Lab Invest, pp. 1525-1533
[17.]
H. Kubie, et al.
Humoral and cellular immunity to Papilloma Virus in patients with cervical dysplasia.
J Med Virol, 24 (1988), pp. 85-95
[18.]
H. Kuroda, et al.
Human chorionic gonadotrophin (hCG) inhibits cisplatin-induced apoptosis in ovarian cancer cells.
Int J Cancer, 6 (1976), pp. 571-578
[19.]
F. Lerebours, et al.
Evidence of chromosome regions and gene involvement in inflamatory breast cancer.
Int J Cancer, pp. 618-622
[20.]
E. Lerma, et al.
Squamous cell carcinoma of the vulva: study of ploid, HPV, p53 and pRb.
Int J Gynecol Pathol, pp. 191-197
[21.]
A. Lie.
Human papillomavirus as a risk factor in carcinogenesis.
Tidsskr Nor Laegeforen, pp. 2771-2776
[22.]
M. Martini, et al.
Possible involvement of h-MLH1-p16 and PTEN in the malignant transformation of endometriosis.
Int J Cancer, pp. 398-406
[23.]
N. Nagai, et al.
GhRh agonist inhibits human telomerase reverse transcriptase m RNA expression in endometrial cancer cells.
Int J Mol Med, pp. 593-597
[24.]
E. Nilsson, et al.
Role of transforming growth factor beta in ovarian cancer.
Reprod Biochem Online, pp. 254-258
[25.]
N. O'Farrell.
N-Nitrosamines, trichomoniasis and cervical cancer.
S Afr Med J, pp. 247-248
[26.]
D. Park, et al.
Prolactin negatively regulates Caveolin-1-gene expression in the mammary gland during via Ras- dependent mechanism.
L Biol Chem, 276 (2001), pp. 48389-48397
[27.]
L. Pellegrini, et al.
Insights into DNA recombination from the structure of RAD 51-BRCA2 complex.
Nature, pp. 287-293
[28.]
X. Peng, et al.
Clinical significance of vascular endothelial growth factor in sera of patiens with gynaecological malignant tumors.
Ai Zheng, pp. 181-185
[29.]
M. Pepper, et al.
Regulation of VEGF and VEGF receptor expression in de mammary gland during pregnancy, lactation and involution.
Dev Dy, pp. 507-524
[30.]
B. Prokoczyk, et al.
Identification of tabacco-specific carcinogen in the cervical mucus of smokers and nonsmokers.
J Natl Cancer Inst, 12 (1997), pp. 868-873
[31.]
A. Rosenthal, et al.
High frequency of loss of heterozigosity in vulvar intraephitelial neoplasia (VIN) is associated with invasive vulvar squamous cell carcinoma.
Int J Cancer, pp. 896-900
[32.]
J. Russo.
Role hormones and proliferative acticity in breast tissue. Breast Cancer Research Laboratory.
Revista de la Federación Latinoamericana de Mastología, 1 (1998), pp. 9-20
[33.]
M. Sasaki, et al.
Polymorphisms of estrogen receptor alpha gene in endometrial cancer.
Biochem Biophis Res, pp. 558-564
[34.]
Scovilar A, et al. Determination of cathepsin B expression may offer additional prognostic information for ovarian cancer patients. Biol
[35.]
S. Sethi, et al.
Serologic response to yhe E4-e6 and e7 proteins of human papillomavirus type 16 in pregnant women.
Am J Obstet Gynecol, 179 (1998), pp. 360-364
[36.]
F. Silman, et al.
The relationship between human papillomavirus and lower genital intraepithelial neoplasia immunosuppresed women.
Am J Obstet Gynecol, 150 (1984), pp. 300-308
[37.]
J. Soares, et al.
Global DNA hypomethylation in breast carcinoma.
Cancer, 85 (1999), pp. 112-118
[38.]
E. Swisher, et al.
Differences in patterns of endometrial carcinomas with or without microsatellites instability.
Cancer, 85 (1999), pp. 119-126
[39.]
A. Teyssie.
Papilomavirus.
Carballal, Oubiña, pp. 281-293
[40.]
W. Tjalma, et al.
Expression of bcl-2 in invasive and in situ carcinoma of the uterine cervix.
Am J Obstet Gynecol, 178 (1998), pp. 113-117
[41.]
E. Turpin, et al.
Increased incidense of erb-2 overexpression and p53 mutation in inflammatory breast cancer.
Oncogene, pp. 7593-7597
[42.]
J. Val, et al.
Cell proliferation nuclear ploidy and EGF.R and HER 2/neu tyrosine kinase oncoproteins in infiltrating ductal breast carcinoma.
Cancer Genet Cytogenet, pp. 69-72
[43.]
J. Wang.
Quantitative analysis of follicle stimulating hormone receptor in ovarian ephitelial tumors: a novel approach of ovarian cancer development in secondary mullerian systems.
Int J Cancer, pp. 328-334
[44.]
H. Yabushita, et al.
Angiostatin expression in endometrial cancer.
Oncol Rep, pp. 1193-1196
[45.]
H. Yabushita, et al.
Vascular endothelial growth factor activating matrix metalloproteinase in ascitis fluid during peritoneal dissemination of ovarian cancer.
Oncol Rep, pp. 89-95
[46.]
D. Yair, et al.
The effects of tamoxifen treatment on the endometrium.
Fertil Steril, 65 (1996), pp. 1083
[47.]
S. Yamada.
Mitogen activated protein kinase 4 in human ovarian cancer.
Cancer Res, pp. 6717-6723
[48.]
K. Yashida, et al.
Telomerasa activity and expression of its RNA component in cervical lessions.
Cancer, 82 (1998), pp. 1319-1327
[49.]
T. Yu, et al.
Involvement of R.ras in estrogen independent proliferation of breast cancer cells.
Oncogene, pp. 7557-7568
[50.]
M. Zygmunt, et al.
Characterization of human chorionic gonadotrophin as a novel angiogenic factor.
J Clin Endocrinol Metab, pp. 5290-5296
Copyright © 2003. Sociedad Española de Ginecología y Obstetricia
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos