covid
Buscar en
Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral
Toda la web
Inicio Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral Aplicación de biomateriales de base biológica, moléculas bioactivas e ingenie...
Información de la revista
Vol. 5. Núm. 3.
Páginas 142-149 (diciembre 2012)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 5. Núm. 3.
Páginas 142-149 (diciembre 2012)
Open Access
Aplicación de biomateriales de base biológica, moléculas bioactivas e ingeniería de tejidos en cirugía plástica periodontal. Una revisión
Application of biological based biomaterials, bioactive molecules and tissue engineering in periodontal plastic surgery. A review
Visitas
3548
J.C. Durán Yaneth1,
Autor para correspondencia
jcdurany@vtr.net

Correspondencia autor: Guardia Vieja 255, of. 216. Providencia. Santiago, Chile.
, C. Alarcón2, D. Velásquez3
1 Especialista en Periodoncia, Universidad Chile. Diplomado en Prótesis Fija, Universidad de Chile. Docente Clínica Integral, Universidad del Desarrollo. Práctica Privada. Santiago, Chile
2 Especialista en Periodoncia, Universidad de Valparaíso. Especialista en Implantología Oral, Universidad Andrés Bello. Práctica Privada. Santiago, Chile
3 DDS, MSD. Especialista en Prostodoncia y Materiales Dentales, Indiana University. Especialista en Periodoncia e Implantología, Universidad de Texas-San Antonio. Diplomate American Board of Periodontology. Profesor Adjunto Clínico, Michigan University School of Dentistry. Departamento de Periodoncia y Medicina Oral. Práctica Privada. Fenton, Michigan, USA
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Objetivo

Describir, clasificar y discutir las indicaciones de los biomateriales de base biológica, moléculas bioactivas e ingeniería de tejidos que se están usando para el manejo de recesiones y aumento de encía en cirugía plástica periodontal. En esta revisión de la literatura, se utilizó una combinación de los términos de búsqueda específicos que consideraran los materiales en revisión, para el aumento de encía adherida, y el recubrimiento radicular.

Materiales y Métodos

Se usaron las siguientes fuentes: Medline, Biblioteca Cochrane, y búsqueda manual de revistas específicas como el Journal of Periodontology, International Journal of Periodontics and Restorative Dentistry y Journal of Clinical Periodontology entre años 1985 y 2011. Se revisaron un total de 117 artículos y se seleccionaron 74 entre estudios clínicos controlados, estudios clínicos randomizados, reportes de casos y estudios en animales. Los artículos fueron revisados por los autores y aceptados por consenso para su discusión.

Conclusiones

1) Existe una serie de materiales que presentan gran potencial y podrían ser una alternativa viable a los injertos autógenos, pero se requiere más estudios a largo plazo. 2) Existe necesidad de estudios con la investigación de estos procedimientos en relación a resultados orientados a la estabilidad, seguridad y efectividad de los diferentes materiales existentes.

Palabras clave:
Recesión gingival
cirugía mucogingival
injerto de tejido
dispositivo biológico
moléculas bioactivas
dispositivos de células vivas
Abstract
Objective

To describe, classify and discuss the clinical applications of biologically based biomaterials, bioactive molecules and tissue engineering being utilized in gingival recession therapy and gingival augmentation procedures in plastic periodontal surgery. In this literature review, a combination of specific search key words were used, including materials being reviewed, indicated for gingival augmentation and root coverage procedures.

Materials and Methods

The following sources were consulted: Medline, Cochrane Library and manual search of specific scientific journals such as Journal of Periodontology, International Journal of Periodontics and Restorative Dentistry and Journal of Clinical Periodontology between the years 1985 and 2011. A total of 117 articles were reviewed with 74 being selected unanimously by the authors for discussion in the manuscript. These articles included controlled clinical studies, randomized clinical studies, case reports and animal studies. The selected articles were reviewed by the authors and accepted by consensus.

Conclusions

1) There is a cohort of materials that exhibit great potential which could be a viable alternative to autografts but are in need of further long term studies. 2) There is a need of research of these materials in relation to stability, safety and efficacy.

Key words:
Gingival recession
mucogingival surgery
tissue graft
biologic dispositives
bioactive molecules
life cell constructs
El Texto completo está disponible en PDF
Referencias bibliográficas
[1.]
P. Wei, L. Laurell, M. Geivelis, M. Lingen.
Acellular dermal matrix allografts to achieve increased attached gingiva. Part 1. A clinical study.
J Periodontol, 71 (2000), pp. 1297-1305
[2.]
B. Langer, L. Langer.
Subepithelial connective tissue graft technique for root coverage.
J Periodontol, 56 (1985), pp. 715-720
[3.]
T.J. Griffin, W.S. Cheung, A.I. Zavras, P.D. Damoulis.
Postoperative complications following gingival augmentation procedures.
J Periodontol, 77 (2006), pp. 2070-2079
[4.]
J. Shulman.
Clinical evaluation of an acellular dermal allograft for increasing the zone attached gingiva.
Pract Periodontics Aesthetic Dent, 8 (1996), pp. 201-208
[5.]
R. Gapski, C. Parks, H. Wang.
Acellular dermal matrix for mucogingival surgery: A meta-analysis.
J Periodontol, 76 (2005), pp. 1814-1822
[6.]
R. Harris.
Clinical evaluation of 3 techniques to augment keratinized tissue without root coverage.
J Periodontol, 72 (2001), pp. 932-938
[7.]
A. Scarano, R. Barros, G. Iezzi, A. Piattelli, A. Novaes Jr..
Acellular dermal matrix graft for gingival augmentation: A preliminary clinical, histologic, and ultrastructural evaluation.
J Periodontol, 80 (2009), pp. 253-259
[8.]
P. Wei, L. Laurell, M. Geivelis, M. Lingen, D. Maddalozzo.
Acellular dermal matrix allografts to achieve increased attached gingiva. Part 2. A histological comparative study.
J Periodontol, 73 (2002), pp. 257-265
[9.]
R. Richardson, G. Maynard.
Acellular dermal graft: A human histologic case report.
Int J Periodontics Restorative Dent, 22 (2002), pp. 21-29
[10.]
L. Cummings, W. Kaldahl, E.P. Allen.
Histologic evaluation of autogenous connective tissue and acellular dermal matrix grafts in humans.
J Periodontol, 76 (2005), pp. 178-186
[11.]
S. Luczyszyn, M. Grisi, A. Novaes, D. Palioto, S. Souza, M. Taba.
Histologic analysis of the acellular dermal matrix graft incorporation process: A pilot study in dogs.
Int J Periodontics Restorative Dent, 27 (2007), pp. 341-347
[12.]
M.E. Aichelmann-Reidy, R.A. Yukna, G.H. Evans, et al.
Clinical evaluation of acellular allograft dermis for the treatment of human gingival recession.
J Periodontol, 72 (2001), pp. 998-1005
[13.]
A.B. Novaes Jr., D.C. Grisi, G.O. Molina, et al.
Comparative 6-month clinical study of a subepithelial connective tissue graft and acellular dermal matrix graft for the treatment of gingival recession.
J Periodontol, 72 (2001), pp. 1477-1484
[14.]
H. Tal, O. Moses, R. Zohar, et al.
Root coverage of advanced gingival recession: A comparative study between acellular dermal matrix allograft and subepithelial connective tissue grafts.
J Periodontol, 73 (2002), pp. 1405-1411
[15.]
R. Harris.
A short-term and long-term comparison of root coverage with an acellular dermal matrix and subepithelial graft.
J Periodontol, 75 (2004), pp. 734-743
[16.]
A. Hirsch, M. Goldstein, J. Goultschin, B.D. Boyan, Z. Schwartz.
A 2-year follow-up of root coverage using subpedicle acellular dermal matrix allografts and subepithelial connective tissue autografts.
J Periodontol, 76 (2005), pp. 1323-1328
[17.]
J.G. Woodyard, H. Greenwell, M. Hill, et al.
The clinical effect of acellular dermal matrix on gingival thickness and root coverage compared to coronally positioned flap alone.
J Periodontol, 75 (2004), pp. 44-56
[18.]
A. De Queiroz Cortez, A. Martins, F. Nociti, A. Sallum, M. Casati, E. Sallum.
Coronally positioned flap with or without acellular dermal matrix graft in the treatments of class i gingival recessions: A randomized controlled clinical study.
J Periodontol, 75 (2004), pp. 1137-1144
[19.]
R.M. Barros, A.B. Novaes Jr., M.F.M. Grisi, et al.
A 6-month comparative clinical study of a conventional and a new surgical approach for root coverage with acellular dermal matrix.
J Periodontol, 75 (2004), pp. 1350-1356
[20.]
J. Taylor, R. Gerlach, R. Herold, F. Bisch, D. Dixon.
A modified tensionless gingival grafting technique using acellular dermal matrix.
Int J Periodontics Restorative Dent, 30 (2010), pp. 513-521
[21.]
M. Felipe, P. Andrade, M. Grisi, S. Souza, M. Taba Jr., D. Palioto, A. Novaes Jr..
Comparison of two surgical procedures for use of the acellular dermal matrix graft in the treatment of gingival recessions: A randomized controlled clinical study.
J Periodontol, 78 (2007), pp. 1209-1217
[22.]
G. Papageorgakopoulos, H. Greenwell, M. Hill, R. Vidal, J. Scheetz.
Root coverage using acellular dermal matrix and comparing a coronally positioned tunnel to a coronally positioned flap approach.
J Periodontol, 79 (2008), pp. 1022-1030
[23.]
M. Modarressi, H. Wang.
Tunneling procedure for root coverage using acellular dermal matrix: A case series.
Int J Periodontics Restorative Dent, 29 (2009), pp. 395-403
[24.]
D. Mahn.
Use of the tunnel technique and an acellular dermal matrix in the treatment of multiple adjacent teeth with gingival recession in the esthetic zone.
Int J Periodontics Restorative Dent, 30 (2010), pp. 593-599
[25.]
N. Shepherd, H. Greenwell, M. Hill, R. Vidal, J. Scheetz.
Root coverage using acellular dermal matrix and comparing a coronally positioned tunnel with and without platelet-rich plasma: A pilot study in humans.
J Periodontol, 80 (2009), pp. 397-404
[26.]
P. Bunyaratavej, H. Wang.
Collagen membranes: A review.
J Periodontol, 72 (2001), pp. 215-229
[27.]
D. Cetiner, A. Parlar, K. Balos, R. Alpar.
Comparative clinical study of connective tissue graft and two types of bioabsorbables barries in the treatment of localized gingival recessions.
J Periodontol, 74 (2003), pp. 1196-1205
[28.]
D. Cardaropoli, D. Cardaropoli.
Healing of gingival recessions using a collagen membrane with demineralized xenograft: A ramdomized controlled clinical trial.
Int J Periodontics Restorative Dent, 29 (2009), pp. 59-68
[29.]
R. Harris.
A comparative study of root coverage obtained with guide tissue regeneration utilizing a bioabsorbable membrane versus the connective tissue with parcial-thickness double pedicle graft.
J Periodontol, 68 (1997), pp. 769-790
[30.]
A. Herford, L. Akin, M. Cicciu, C. Maiorana.
Boyne. Use of a porcine collagen matrix as an alternative to autogenous tissue for grafting oral soft tissue defects.
J Oral Maxillofac Surg, 68 (2010), pp. 1463-1470
[31.]
M. Sanz, R. Lorenzo, J.J. Aranda, C. Martin, M. Orsini.
Clinical evaluation of a new collagen matrix (Mucografts prototype) to enhance the width of keratinized tissue in patients with fixed prosthetic restorations: A randomized prospective clinical trial.
J Clin Periodontol, 36 (2009), pp. 868-876
[32.]
M. McGuire, T. Scheyer.
Xenogeneic collagen matrix with coronally advanced flap compared to connective tissue with coronally advanced flap for the treatment of dehiscence-type recession defects Michael K.
J Periodontol, 81 (2010), pp. 1108-1117
[33.]
L. Heijl.
Periodontal regeneration with enamel matrix derivative in one human experimental defect. A case report.
J Clin Periodontol, 24 (1997), pp. 693-696
[34.]
L. Hammastrom, L. Heijl, S. Gestrelius.
Periodontal regeneration in a buccal dehiscence model in monkeys after applications of enamel matrix proteins.
J Clin Periodontol, 24 (1997), pp. 669-677
[35.]
P.F. Andrade, M.F.M. Grisi, A.M. Marcaccini, P.G. Fernades, D.M. Reino, S.L.S. Souza, et al.
Comparison between micro and macrosurgical techniques for the treatment of localized gingival recessions using coronally positioned flaps and enamel matrix derivative.
J Periodontol, 81 (2010), pp. 1572-1579
[36.]
A. Pilloni, M. Paolantonio, P.M. Camargo.
Root coverage with a coronally positioned flap used in combination with enamel matrix derivative: 18-month clinical evaluation.
J Periodontol, 77 (2006), pp. 2031-2039
[37.]
A. Castellanos, M. de la Rosa, M. de la Garza, R.G. Caffesse.
Enamel matrix derivative and coronal flaps to cover marginal tissue recessions.
J Periodontol, 77 (2006), pp. 7-14
[38.]
M.A. Cueva, F.E. Boltchi, W.W. Hallmon, M.E. Nunn, F. Rivera-Hidalgo, T. Rees.
A comparative sudy of coronally advancd flaps with and without the addition of enamel matrix derivative in the treatment of marginal tissue recession.
J Periodontol, 75 (2004), pp. 949-956
[39.]
A. Spahr, S. Haegewald, F. Tsoulfidou, E. Rompola, L. Heijl, J.P. Bernimoulin, et al.
Coverage of Miller class I and II recession defects using enamel matrix proteins versus coronally advanced flap technique: A 2 year report.
J Periodontol, 76 (2005), pp. 1871-1880
[40.]
C.E. Nemcovsky, Artzi Zvi, H. Tal, A. Kozlovsky, O. Moses.
A multicenter comparative study of two root coverage procedures: Coronally advanced flap with addition of enamel matrix proteins and subpedicle connective tissue graft.
J Periodontol, 75 (2004), pp. 600-607
[41.]
I. Berlucchi, L. Francetti, M. Del Fabbro, M. Basso, R.L. Weinstein.
The influence of anatomical features on the outcome of gingival recessions treated with coronally advanced flap and enamel matrix derivative: A 1 year prospective study.
J Periodontol, 76 (2005), pp. 899-907
[42.]
G. Rasperini, M. Silvestri, R.K. Schenk, M.L. Nevins.
Clinical and histologic evaluation of human gingival recession treated with a subepithelial connective tissue graft and enamel matrix derivative (Emdogain): A case report.
Int J Periodontics Restorative Dent, 20 (2000), pp. 269-275
[43.]
M.K. McGuire, D.L. Cochran.
Evaluation of human recession defects treated with coronally advanced flaps and either enamel matrix derivative or connective tissue. Part 2: Histological evaluation.
J Periodontol, 74 (2003), pp. 1126-1135
[44.]
J. Carnio, P.M. Camrgo, E.B. Kenney, R.K. Schenk.
Histological evaluation of 4 cases of root coverage following a connective tissue graft combined with an enamel matrix derivative preparation.
J Periodontol, 73 (2002), pp. 1534-1543
[45.]
J.J. Qian, R.S. Bhatnagar.
Enhanced cell attachment to anorganic bone mineral in the presence of a synthetic peptide related to collagen.
J Biomed Mater Res, 3 (1996), pp. 545-554
[46.]
C.A. Nazareth, P.R. Cury.
Use of anorganic bovine-derived hydroxyapatite matrix (ABM)/cell-binding peptide (p-15) in the treatment of isolated class I gingival recession defects: A pilot study.
J Periodontol, 82 (2011), pp. 700-707
[47.]
S.E. Lynch, R.C. Williams, A.M. Polson, et al.
A combination of platelet-derived growth factor and insulin-like growth factor enhances periodontal regeneration.
J Clin Periodontol, 16 (1989), pp. 545-554
[48.]
N. Matsuda, Lin Wl, M.I. Kumar, M.I. Cho, R.J. Genco.
Mitogenic, chemotactic and synthetic responses of rat periodontal ligament fibroblastic cells to polypeptide growth factors in vitro.
J Periodontol, 63 (1992), pp. 515-525
[49.]
M. Nevins, M. Camelo, M.L. Nevins, R.K. Schenk, S.E. Lynch.
Periodontal regeneration in humans using recombinant human platelet-derived growth factor- BB (rhPDGF-BB) and allogenic bone.
J Periodontol, 74 (2003), pp. 1282-1292
[50.]
M.K. McGuire, E.T. Scheyer.
Comparison of recombinant human platelet derived growth factor BB plus beta tricalcium phosphate and a collagen membrane to subepithelial connective tissue grafting for the treatment of recession defects: A case series.
Int J Periodontics Restorative Dent, 26 (2006), pp. 127-133
[51.]
M.K. McGuire, E.T. Scheyer, M. Nevins, P. Schupbach.
Evaluation of human recession defects treated with coronally advanced flaps and either purified recombinant human platelet-derived growth factor-BB with beta tricalcium phosphate or connective tissue: A histologic and microcmputed tomographic examination.
Int J Periodontics Restorative Dent, 29 (2009), pp. 7-21
[52.]
J. Hodde, S. Badylak.
Glycosaminoglycan content of small intestinal submucosa: A bioscaffold fot tissue replacement.
Tissue Engineering, 2 (1996), pp. 209-216
[53.]
M. Smith, R. Campbell.
Use of a biodegradable patch for reconstruction of large thoracic cage defects in growing children.
J Pediatr Surg, 41 (2006), pp. 46-49
[54.]
S.L. Woo, Y. Takakura, R. Liang, F. Jia, D.K. Moon.
Treatment with bioscaffold enhances the the fibril morphology and the collagen composition of healing medial collateral ligament in rabbits.
Tissue Eng, 12 (2006), pp. 159-166
[55.]
M. Nevins, M. Camelo, P. Schupbach, D. Kim.
The clinical efficacy of dynamatrix extracellular membrane in augmenting keratinized tissue.
Int J Periodontics Restorative Dent, 30 (2010), pp. 151-161
[56.]
V. Falanga, D. Margolis, O. Alvarez, M. Auletta, F. Maggiacomo, M. Altman, J. Jensen, M. Sabolinski, J. Hardin-Young.
Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Human skin equivalent investigators group.
Arch Dermatol, 134 (1998), pp. 293-300
[57.]
A. Veves, V. Falanga, D.G. Armstrong, M.L. Sabolinski.
Apligraf diabetic foot ulcer study. Graftskin, a human skin equivalent, is effective in the managment of noninfected neurophatic diabetic foot ulcers.
Diabetes Care, 24 (2001), pp. 290-295
[58.]
G.P. Pini Prato, R. Rotundo, C. Magnani, C. Soranzo.
Tissue engeineering technology for gingival augmentation procedures: A case report.
Int J Periodontics Restorative Dent, 20 (2000), pp. 553-559
[59.]
G.P. Pini Prato, R. Rotundo, C. Magnani, C. Soranzo, L. Muzzi, F. Cairo.
An autologous cell hyaluronic acid graft technique for the gingival augmentation: A case series.
J Periodontol, 74 (2003), pp. 262-267
[60.]
M.K. McGuire, M.E. Nunn.
Evaluation of the safety and efficacy of periodontal applications of a living tissue-engineered human fibroblast-derived dermal substitute. I. Comparison to the gingival autograft: A randomized controlled pilot study.
J Periodontol, 76 (2005), pp. 867-880
[61.]
T.G. Wilson Jr., M.K. McGuire, M.E. Nunn.
Evaluation of the safety and efficacy of periodontal applications of a living tissue-engineered human fibroblast-derived dermal substitute. II. Comparison to the subepithelial connective tissue graft: A randomized controlled feasibility study.
J Periodontol, 76 (2005), pp. 881-889
[62.]
M. Mohammadi, M.A. Shokrgozar, R. Mofid.
Culture of human gingival fibroblasts on a biodegradable scaffold and evaluation of its effect on attached gingiva: A randomized, controlled pilot study.
J Periodontol, 78 (2007), pp. 1897-1903
[63.]
M.L. Nevins.
Tissue-engineered bilayered cell therapy for the treatment of oral mucosal defects: A case series.
Int J Periodontics Restorative Dent, 30 (2010), pp. 31-39
[64.]
M.K. McGuire, E.T. Scheyer, M.E. Nunn, P.T. Lavin.
A pilot study to evaluate a tissueengineered bilayered cell therapy as an alternative to tissue from the palate.
J Periodontol, 79 (2008), pp. 1847-1856
[65.]
T. Morelli, R. Neiva, M.L. Nevins, M.K. McGuire, E.T. Scheyer, T.J. Oh, T.M. Braun, J.E. Nör, D. Bates, W.V. Giannobile.
Angiogenic biomarkers and healing of living cellular constructs.
J Dent Res, 90 (2011), pp. 456-462
[66.]
M.K. McGuire, E.T. Scheyer, M. Nevins, R. Neiva, D.L. Cochran, J.T. Mellonig, W.V. Giannobile, D. Bates.
Living cellular construct for increasing the width of keratinized gingiva. Results from a randomized, within-patient, controlled trial.
[67.]
M. Murata, K. Okuda, M. Momose, K. Kubo, Y. Kuroyanagi, L.F. Wolff.
Root coverage with cultured gingival dermal substitute composed of gingival fibroblasts and matrix: A case series.
Int J Periodontics Restorative Dent, 28 (2008), pp. 461-467
[68.]
M.K. McGuire, E.T. Scheyer.
A randomized, double-blind, placebo-controlled study to determine the safety and efficacy of cultured and expanded autologous fibroblast injections for the treatment of interdental papillary insufficiency associated with the papilla priming procedure.
J Periodontol, 78 (2007), pp. 4-17
[69.]
W.S. Cheung, T.J. Griffin.
A comparative study of root coverage with connective tissue and platelet concentrate grafts: 8-month results.
J Periodontol, 75 (2004), pp. 1678-1687
[70.]
L.H. Huang, R.E. Neiva, S.E. Soehren, W.V. Giannobile, H.L. Wang.
The effect of platelet-rich plasma on the coronally advanced flap root coverage procedure: A pilot human trial.
J Periodontol, 76 (2005), pp. 1768-1777
[71.]
F.F. Suaid, M.D. Carvalho, M.P. Santamaria, M.Z. Casati, F.H. Nociti Jr., A.W. Sallum, E.A. Sallum.
Platelet-rich plasma and connective tissue grafts in the treatment of gingival recessions: A histometric study in dogs.
J Periodontol, 79 (2008), pp. 888-895
[72.]
S. Aroca, T. Keglevich, B. Barbieri, I. Gera, D. Etienne.
Clinical evaluation of a modified coronally advanced flap alone or in combination with a platelet-rich fibrin membrane for the treatment of adjacent multiple gingival recessions: A 6-month study.
J Periodontol, 80 (2009), pp. 244-252
[73.]
D.J.M. Leong, H.L. Wang.
A decision tree for soft tissue grafting.
Int J Periodontics Restorative Dent, 31 (2011), pp. 307-313
[74.]
G. Rasperini, M. Roccuzzo, L. Francetti, et al.
Subepithelial connective tissue graft for treatment of gingival recessions with and without enamel matrix derivative: A multicenter, randomized controlled clinical trial.
Int J Periodontics Restorative Dent, 31 (2011), pp. 133-139
Copyright © 2012. Sociedad de Periodoncia de Chile, Sociedad de Implantología Oral de Chile y Sociedad de Prótesis y Rehabilitación Oral de Chile
Descargar PDF
Opciones de artículo