covid
Buscar en
Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral
Toda la web
Inicio Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral Variabilidad de la síntesis de citoquinas por células dendríticas humanas est...
Información de la revista
Vol. 6. Núm. 2.
Páginas 57-62 (agosto 2013)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 6. Núm. 2.
Páginas 57-62 (agosto 2013)
Open Access
Variabilidad de la síntesis de citoquinas por células dendríticas humanas estimuladas con los distintos serotipos de Aggregatibacter actinomycetecomitans
Variability in the cytokine synthesis by human dendritic cells in response to different Aggregatibacter actinomycetemcomitans serotypes
Visitas
1411
J. Díaz-Zúñiga1,
Autor para correspondencia
zaidemiaj@gmail.com

Correspondencia autor:
, S. Melgar-Rodríguez1, J.P. Yáñez1, C. Álvarez1, C. Rojas1, A. Benítez1, P. Ciuchi1, G. Monasterio1, R. Vernal1,
Autor para correspondencia
rvernal@uchile.cl

Correspondencia autor:
1 Laboratorio de Biología Periodontal. Departamento de Odontología Conservadora. Facultad de Odontología, Universidad de Chile. Chile
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Objetivo

Sobre la base de la antigenicidad del polisacárido O del LPS, en A. actinomycetemcomitans se describen distintos serotipos bacterianos y entre ellos se ha especulado una patogenicidad e inmunogenicidad diferente. El objetivo de este trabajo es analizar las diferencias en la síntesis de citoquinas producidas por células dendríticas cuando son estimuladas con los distintos serotipos de A. actinomycetemcomitans.

Metodología

Células dendríticas diferenciadas a partir de monocitos circulantes periféricos humanos fueron estimuladas a MOIs=10-1-10-2 con los serotipos a, b y c de A. Actinomycetemcomitans. Mediante PCR y ELISA se evaluaron los niveles de expresión y secreción de citoquinas.

Resultados

En las células dendríticas, la producción de citoquinas fue diferente ante los distintos serotipos de A. actinomycetemcomitans, con mayores niveles de secreción de IL-1β, IL-6, IL-12, IL-23, IFN-γ y TNF-α cuando el microorganismo estimulante fue la cepa ATCC® 43718™ (serotipo b).

Conclusión

El serotipo b de A. actinomycetemcomitans posee un mayor potencial inmuno-estimulador de células dendríticas comparado con los otros serotipos bacterianos y potencialmente contribuiría a inducir un patrón de respuesta inmune tipo Th1 y/o Th17 durante las periodontitis.

Palabras clave:
Células dendríticas
citoquinas
Aggregatibacter actinomycetemcomitans
Abstract
Objective

A. actinomycetemcomitans expresses a number of virulence factors that contribute to direct tissue damage and, based on the antigenicity of LPS O-polysaccharide, distinct serotypes have been described. The aim of this study was to determine the pattern of cytokine expression and secretion on dendritic cells stimulated with A. actinomycetemcomitans serotypes a, b and c.

Methods

Using different multiplicity of infections of the serotypes a, b, and c of A. actinomycetemcomitans, the mRNA expression and secretion levels for cytokines IL-1β, IL-5, IL-6, IL-10, IL-12, IL-23, TNF-α, and IFN-γ were determined in stimulated dendritic cells using PCR and ELISA.

Results

A dose-dependent increase in the secretion levels for IL-1β, IL-5, IL-6, IL-10, IL-12, IL-23, TNF-α, and IFN-γ was elicited on dendritic cells following stimulation with each of the serotypes of A. actinomycetemcomitans. In addition, A. actinomycetemcomitans serotype b (ATCC® 43718™) induced higher levels of IL-1β, IL-6, IL-12, IL-23, IFN-γ y TNF-α compared with the other strains.

Conclusion

These data demonstrate that the distinct A. actinomycetemcomitans LPS O-polysaccharide serotypes induce both quantitative and qualitative differences in the dendritic cell response. Furthermore, the observed dendritic cell response to A. actinomycetemcomitans b serotype was characteristic of a Th1 and Th17 pattern of cytokine expression.

Key words:
Dendritic cells
citokines
Agregagibacter actinomycetemcomitans
El Texto completo está disponible en PDF
Referencias Bibliográficas
[1.]
G. Armitage.
Development of a classification system for periodontal diseases and conditions.
Ann Periodontol, 4 (1999), pp. 1-110
[2.]
S. Socransky, A. Haffajee.
Periodontal microbial ecology.
Periodontol 2000, 38 (2005), pp. 135-187
[3.]
Y.T. Teng.
Immune cell involvement in periodontal bone loss.
Periodontal Medicine and Systems Biology, pp. 407-426
[4.]
E. Gemmell, K. Yamazaki, G. Seymour.
The role of T cells in periodontal disease: Homeostasis and autoimmunity.
Periodontol 2000, 43 (2007), pp. 14-40
[5.]
S. Offenbacher.
Periodontal diseases: Pathogenesis.
Ann Periodontol, 1 (1996), pp. 812-869
[6.]
G. Salvi, N. Lang.
Host response modulation in the management of periodontal diseases.
J Clin Periodontol, 32 (2005), pp. 108-129
[7.]
G. Salvi, M. Kandylaki, A. Troendle, G. Persson, N. Lang.
Experimental gingivitis in type I diabetics: A controlled clinical and microbiological study.
J Clin Periodontol, 32 (2005), pp. 310-316
[8.]
M. Listgarten.
Pathogenesis of periodontitis.
J Clin Periodontol, 13 (1986), pp. 418-430
[9.]
R. Kikkert, M. Laine, L. Aarden, A.V. Winkelhoff.
Activation of toll-like receptors 2 and 4 by gram-negative periodontal bacteria.
Oral Microbiol Immunol, 22 (2007), pp. 145-151
[10.]
T. Ukai, Y. Mori, M. Onoyama, Y. Hara.
Immunohistological study of interferon-gand interleukin-4-bearing cells in human periodontitis gingiva.
Arch Oral Bio, 46 (2001), pp. 901-908
[11.]
G. Nussbaum, S. Ben-Adi, T. Genzler, M. Sela, G. Rosen.
Involvement of toll-like receptor 2 and 4 in the innate immune response to Treponema denticola and its outer sheath components.
Infect Immun, 77 (2009), pp. 3939-3947
[12.]
G. Garlet.
Destructive and protective roles of cytokines in periodontitis: A reappraisal from host defense and tissue destruction viewpoints.
J Dent Res, 89 (2010), pp. 1349-1363
[13.]
H. Brightbill, D. Libraty, S. Krutzik, R. Yang, J. Belisle, J. Bleharski, M. Maitland, M. Norgard, S. Plevy, S. Smale, et al.
Host defense mechanism triggered by microbial lipoproteins throught toll-like receptors.
Science, 285 (1999), pp. 732-736
[14.]
J. Zhu, W. Paul.
CD4 T cells: Fates, functions and faults.
Blood, 112 (2008), pp. 1557-1569
[15.]
R. Steinman, D. Hawiger, M. Nussenzweig.
Tolerogenic dendritic cells.
Annu Rev Immunol, 21 (2003), pp. 685-711
[16.]
E. Gemmell, G. Seymour.
Immunoregulatory control of Th1/Th2 cytokine profiles in periodontal disease.
Periodontol 2000, 35 (2004), pp. 21-41
[17.]
S. Socransky, A. Haffajee.
Dental biofilms: Difficult therapeutic targets.
Periodontol 2000, 28 (2002), pp. 12-55
[18.]
M. Curtis, J. Slaney, J. Aduse-Opoku.
Critical pathways in microbial virulence.
J Clin Periodontol, 32 (2005), pp. 28-38
[19.]
J. Slots, L. Bragd, M. Wikstrom, G. Dahle.
The occurrence of Actinobacillus actinomycetemcomitans, Bacteroides gingivalis and Bacteroides intermedius in destructive periodontal disease in adults.
J Clin Periodontol, 13 (1986), pp. 570-577
[20.]
J. Díaz, J. Yáñez, S. Melgar, C. Álvarez, C. Rojas, R. Vernal.
Virulencia y variabilidad de Porphyromonas gingivalis y Aggregatibacter actinomycetemcomitans y su asociación a la periodontitis.
Rev Clín Per Imp Rehab Oral, 5 (2012), pp. 40-45
[21.]
J. Choi, M. Borrello, E. Smith, C. Cutler, H. Sojar, M. Zauderer.
Prior exposure of mice to Fusobacterium nucleatum modulates host response to Porphyromonas gingivalis.
Oral Microbiol Immunol, 16 (2001), pp. 338-344
[22.]
A. Kopitar, N. Ahan Hren, A. Ihan.
Commensal oral bacteria antigens prime human dendritic cells to induce Th1 Th2 or Treg differentiation.
Oral Microbiol and Immunol, 21 (2006), pp. 5
[23.]
R. Jowatni, C. CW.
Fimbriated Porphyromonas gingivalis is more efficient than fimbria-deficient P. gingivalis in entering human dendritic cells in vitro and induces an inflammatory Th1 effector response.
Infect Immun, 72 (2004), pp. 1725-1732
[24.]
S. Kanaya, E. Nemoto, T. Ogawa, H. Shimauchi.
Porphyromonas gingivalis lipopolysaccharides induce maturation of dendritic cells with CD14+CD16+ phenotype.
Eur J Immunol, 34 (2004), pp. 1451-1460
[25.]
M. Laine, A. van Winkelhoff.
Virulence of six capsular serotypes of Porphyromonas gingivalis in a mouse model.
Oral Microbiol Immunol, 13 (1998), pp. 322-325
[26.]
M. Laine, B. Appelmelk, A. van Winkelhoff.
Novel polysaccharide capsular serotypes in Porphyromonas gingivalis.
J Periodont Res, 31 (1996), pp. 278-284
[27.]
R. Vernal, R. Leon, A. Silva, A. van Winkelhoff, J. Garcia-Sanz, M. Sanz.
Differential cytokine expression by human dendritic cells in response to different Porphyromonas gingivalis capsular serotypes.
J Clin Periodontol, 36 (2009), pp. 823-829
[28.]
R. Vernal, E. Diaz-Guerra, A. Silva, M. Sanz, J. Garcia-Sanz.
Distinct Th responses triggered in human T lymphocytes by different Porphyromonas gingivalis capsular serotypes.
J Clin Periodontol, (2012),
[29.]
E. King, H. Tatum.
Actinobacillus actinomycetemcomitans and Haemophilus aphrophilus.
J Infect Dis, 111 (1962), pp. 85-94
[30.]
J. Kaplan, M. Perry, L. MacLean, D. Furganga, M. Wilson, D. Fine.
Structural and genetic analyses of O polysaccharide from Actinobacillus actinomycetemcomitans serotype f.
Infect Immun, 69 (2001), pp. 5375-5384
[31.]
J. Zambon, J. Slots, R. Genco.
Serology of Actinobacillus actinomycetemcomitans and serotype distribution in human periodontal disease.
Infect Immun, 41 (1983), pp. 19-27
[32.]
J. Cortelli, D. Aquino, S. Cortelli, C. Roman-Torres, G. Franco, R. Gomez, L. Batista, F. Costa.
Aggregatibacter actinomycetemcomitans serotypes infections periodontal conditions: A. two-way assessment.
Eur J. Clin Microbiol Infect Dis, 31 (2012), pp. 1311-1318
[33.]
T. Shimada, N. Sugano, R. Nishihara, K. Suzuki, H. Tanaka, K. Ito.
Differential effects of five Aggregatibacter actinomycetemcomitans strains on gingival epithelial cells.
Oral Microbiol Immunol, 23 (2008), pp. 455-458
[34.]
S. Asikainen, C. Lai, S. Alaluusua, J. Slots.
Distribution of Actinobacillus actinomycetemcomitans serotypes in periodontal health and disease.
Oral Microbiol Immunol, 6 (1991), pp. 115-118
[35.]
N. Suzuki, Y. Nakano, Y. Yoshida, D. Ikeda, T. Koga.
Identification of Actinobacillus actinomycetemcomitans serotypes by multiplex PCR.
J Clin Microbiol, 39 (2001), pp. 2002-2005
[36.]
C. Lai, M. Listgarten, B. Hammond.
Comparative ultrastructure of leukotoxic and non-leukotoxic strains of Actinobacillus actinomycetemcomitans.
J Periodont Res, 16 (1981), pp. 379-399
[37.]
J. Ebersole, M. Sandoval, M. Steffen, D. Cappelli.
Serum antibody in Actinobacillus actinomycetemcomitans-infected patients with periodontal disease.
Infect Immun, 59 (1991), pp. 1795-1802
[38.]
M. Azuma.
Fundamental mechanisms of host immune responses to infection.
J Periodont Res, 41 (2006), pp. 361-373
[39.]
C. Cutler, R. Jowatni.
Antigen-presentation and the role of dendritic cells in periodontitis.
Periodontol 2000, 35 (2004), pp. 135-157
[40.]
J. Wilton, J. Bampton, G. Griffiths, M. Curtis, J. Life, N. Johnson, J. Powell, G. Harrap, P. Critchley.
Interleukin-1 beta (IL-1 beta) levels in gingival crevicular fluid from adults with previous evidence of destructive periodontitis. A cross sectional study.
J Clin Periodontol, 19 (1992), pp. 53-57
[41.]
M. Revel.
Host defense against infections and inflammations: Role of the multifunctional IL6/IFN-beta cytokine.
Experentia, 45 (1989), pp. 549-558
[42.]
T. Korn, M. Mitsdoerffer, A. Croxford, A. Awasthi, V. Dardalhon, G. Galileos, P. Vollmar, G. Stritesky, M. Kaplan, A. Waisman, et al.
IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T.cells.
[43.]
S. Gaffen, G. Hajishengallis.
A new inflammatory cytokine on the block: Rethinking periodontal disease and the Th1/Th2 paradigm in the context of Th17 cells and IL-17.
J Dent Res, 87 (2008), pp. 817-826
[44.]
R. Johnson, F. Serio.
Interleukin-18 concentrations and the pathogenesis of periodontal disease.
J Periodontol, 76 (2005), pp. 785-790
[45.]
H. Sasaki, N. Suzuki, R. Kent, N. Kawashima, J. Takeda, P. Stashenko.
T cell response mediated by myeloid cell-derived IL-12 is responsible for Porphyromonas gingivalis-induced periodontitis in IL-10-deficient mice.
J Immunol, 180 (2008), pp. 6193-6198
[46.]
R. Vernal, J. Garcia-Sanz.
Th17 and Treg cells, two new lymphocyte subpopulations with a key role in the immune response against infection.
Infect Disord Drug Targets, 8 (2008), pp. 207-220
[47.]
N. Dutzan, R. Vernal, M. Hernandez, A. Dezerega, O. Rivera, N. Silva, J. Aguillon, J. Puente, P. Pozo, J. Gamonal.
Levels of interferon-gamma and transcription factor T-bet in progressive periodontal lesions in patients with chronic periodontitis.
J Periodontol, 80 (2009), pp. 290-296
[48.]
D. Graves, D. Fine, Y. Teng, T. Van Dyke, G. Hajishengallis.
The use of rodent models to investigate host-bacteria interactions related to periodontal diseases.
J Clin Periodontol, 35 (2008), pp. 89-105
[49.]
D. Graves, D. Cochran.
The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction.
J Periodontol, 74 (2003), pp. 391-401
[50.]
G. Garlet, C. Cardoso, A. Campanelli, B. Ferreira, M. Avila-Campos, F. Cunha, J. Silva.
The dual role of p55 tumour necrosis factor-alpha receptor in Actinobacillus actinomycetemcomitans-induced experimental periodontitis: Host protection and tissue destruction.
Clin Exp Immunol, 147 (2007), pp. 128-138
[51.]
A. Colombo, C. Silva, A. Haffajee, A. Colombo.
Identification of oral bacteria associated with crevicular epithelial cells from chronic periodontitis lesions.
J Med Microbiol, 55 (2006), pp. 609-615
[52.]
S. Asikainen, C. Chen, J. Slots.
Actinobacillus actinomycetemcomitans genotypes in relation to serotypes and periodontal status.
Oral Microbiol Immunol, 10 (1995), pp. 65-68
[53.]
B. Henderson, J.M. Ward, D. Ready.
Aggregatibacter (Actinobacillus) actinomycetemcomitans: A triple A* periodontopathogen?.
Periodontol 2000, 54 (2010), pp. 78-105
Copyright © 2013. Sociedad de Periodoncia de Chile, Sociedad de Implantología Oral de Chile y Sociedad de Prótesis y Rehabilitación Oral de Chile
Descargar PDF
Opciones de artículo