covid
Buscar en
Revista Colombiana de Cancerología
Toda la web
Inicio Revista Colombiana de Cancerología Frecuencias de las pérdidas de heterocigocidad en la región que codifica para ...
Información de la revista
Vol. 13. Núm. 4.
Páginas 191-204 (enero 2009)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 13. Núm. 4.
Páginas 191-204 (enero 2009)
Acceso a texto completo
Frecuencias de las pérdidas de heterocigocidad en la región que codifica para HLA en biopsias de pacientes con cáncer de cuello uterino
Frequency of Heterozygosity Loss in the Region to be Encoded by HLA in Biopsies of Patients with Cervical Cancer
Visitas
4422
Josefa Antonia Rodríguez1, Liliana Galeano1, Diana María Palacios2,3, Martha Lucía Serrano1, María Mercedes Bravo1, Alba Lucía Cómbita1,2,
Autor para correspondencia
acombita@cancer.gov.co

Correspondencia: Alba Lucía Cómbita, Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología. Av. 1 N° 9-85, Bogotá, Colombia. Teléfono: 334 0959.
1 Instituto Nacional de Cancerología, Bogotá, Colombia
2 Universidad Nacional de Colombia, Bogotá, Colombia
3 Fundación Santa Fe de Bogotá, Bogotá, Colombia
Este artículo ha recibido
Información del artículo
Resumen
Objetivo

Determinar las frecuencias de pérdidas de heterocigocidad de LOH en las regiones 6p21.3 y 15q21 que codifican para HLA y β2 microglobulina, para establecer su correlación con el estadio tumoral, teniendo en cuenta que las LOH en HLA I ocurren como un evento genético temprano del cáncer y pueden contribuir a su desarrollo.

Métodos

Se tomaron muestras de sangre periférica (SP) y biopsias de cuello uterino de pacientes con NICIII y CCU. Se amplificaron 11 microsatélites relacionados con el sistema HLA en pares normal-tumor a partir de ADN purificado de células de SP y células tumorales microdisectadas. Las LOH fueron determinadas por electroforesis capilar y analizadas mediante los programas GeneScan y Genotyper.

Resultado

Todas las muestras amplificaron más de 7 microsatélites (promedio 9,5). El porcentaje de heterocigocidad para los marcadores de microsatélites utilizados en las muestras de cuello uterino varió entre 51,8% y 95%, y la LOH, entre 17,4% y 50,0%. Las frecuencias observadas para LOH en los diferentes estadios tumorales fueron: 42,9% en el grupo de NIC-III; 57% en CCU en estadio I; 63,6% en CCU en estadio II y 92,85% en pacientes con estadios más avanzados (III-IV).

Conclusión

Se observó una mayor frecuencia de LOH en los grupos de pacientes con estadios avanzados de CCU, al comparar con pacientes con NIC-III.

Palabras clave:
neoplasias de cuello uterino
pérdida de heterocigocidad
antígenos HLA
escape del tumor
Abstract
Objective

To determine the frequency of LOH heterozygosity in the regions 6p21.3 and 15q21 which encode for HLA and β2microglobulina in order to establish their correlation with tumoral stage, taking into account that LOH and HLA I occur as an early genetic event in cancer and can contribute to its development.

Methods

Peripheral blood (PB) samples and cervical biopsies were taken from patients with CIN III and invasive cancer. Amplification was made of eleven microsatellites related to the HLA system, in normal-tumor pairs, based on purified DNA PB cells and micro-dissected tumor cells. LOH were determined through capillary electrophoresis and analyzed with GeneScan and Genotyper programs.

Results

All samples amplified at more than 7 microsatellites (average 9.5). The percentage of heterozygosity for microsatellite markers used in the cervical samples varied between 51.8% and 95%; the LOH, between 17.4% and 50.0%. The frequencies observed for LOH in the different tumoral stages were: 42.9% in the CIN III group; 57% in invasive cancer Stage I; 63.6% in Stage II, and 92.85% in patients in the most advanced stages (III-IV).

Conclusion

Greater frequency of LOH was observed in groups of patients with advanced stages of invasive cancer in comparison with patients with CIN III.

Key words:
Uterine cervical neoplasm
loss of heterozygosity
HLA antigens
tumor escape
El Texto completo está disponible en PDF
Referencias
[1.]
B. Dutrillaux.
Pathways of chromosome alteration in human epithelial cancers.
Adv Cancer Res, 67 (1995), pp. 59-82
[2.]
S. Pathak, A.S. Multani.
Aneuploidy, stem cells and cancer.
EXS, (2006), pp. 49-64
[3.]
T. Sugai, W. Habano, Y.F. Jiao, M. Suzuki, A. Takagane, S. Nakamura.
Analysis of genetic alterations associated with DNA diploidy, aneuploidy and multiploidy in gastric cancers.
Oncology, 68 (2005), pp. 548-557
[4.]
I. Algarra, A. Collado, F. Garrido.
Altered MHC class I antigens in tumors.
Int J Clin Lab Res, 27 (1997), pp. 95-102
[5.]
P. Devilee, A.M. Cleton-Jansen, C.J. Cornelisse.
Ever since Knudson.
Trends Genet, 17 (2001), pp. 569-573
[6.]
P. Armitage, R. Doll.
A two-stage theory of carcinogenesis in relation to the age distribution of human cancer.
Br J Cancer, 11 (1957), pp. 161-169
[7.]
A.G. Knudson Jr..
Mutation and cancer: statistical study of retinoblastoma.
Proc Natl Acad Sci USA, 68 (1971), pp. 820-823
[8.]
A.G. Knudson Jr., H.W. Hethcote, B.W. Brown.
Mutation and childhood cancer: a probabilistic model for the incidence of retinoblastoma.
Proc Natl Acad Sci USA, 72 (1975), pp. 5116-5120
[9.]
C.E. Jackson, M.A. Block, K.A. Greenawald, A.H. Tashjian Jr..
The two-mutational-event theory in medullary thyroid cancer.
Am J Hum Genet, 31 (1979), pp. 704-710
[10.]
H.W. Hethcote, A.G. Knudson Jr..
Model for the incidence of embryonal cancers: application to retinoblastoma.
Proc Natl Acad Sci USA, 75 (1978), pp. 2453-2457
[11.]
I. Maleno, M.A. López-Nevot, T. Cabrera, J. Salinero, F. Garrido.
Multiple mechanisms generate HLA class I altered phenotypes in laryngeal carcinomas: high frequency of HLA haplotype loss associated with loss of heterozygosity in chromosome region 6p21.
Cancer Immunol Immunother, 51 (2002), pp. 389-396
[12.]
I. Maleno, C.M. Cabrera, T. Cabrera, L. Paco, M.A. López-Nevot, A. Collado, et al.
Distribution of HLA class I altered phenotypes in colorectal carcinomas: high frequency of HLA haplotype loss associated with loss of heterozygosity in chromosome region 6p21.
Immunogenetics, 56 (2004), pp. 244-253
[13.]
P. Jiménez, J. Canton, A. Collado, T. Cabrera, A. Serrano, L.M. Real, et al.
Chromosome loss is the most frequent mechanism contributing to HLA haplotype loss in human tumors.
Int J Cancer, 83 (1999), pp. 91-97
[14.]
P.J. Bjorkman, P. Parham.
Structure, function, and diversity of class I major histocompatibility complex molecules.
Annu Rev Biochem, 59 (1990), pp. 253-288
[15.]
G.L. Palmisano, M.P. Pistillo, P. Capanni, C. Pera, G. Nicolo, S. Salvi, et al.
Investigation of HLA class I downregulation in breast cancer by RT-PCR.
Hum Immunol, 62 (2001), pp. 133-139
[16.]
M.J. Maeurer, S.M. Gollin, D. Martin, W. Swaney, J. Bryant, C. Castelli, et al.
Tumor escape from immune recognition: lethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen.
J Clin Invest, 98 (1996), pp. 1633-1641
[17.]
F. Garrido, F. Ruiz-Cabello, T. Cabrera, J.J. Pérez-Villar, M. López-Botet, M. Duggan-Keen, et al.
Implications for immunosurveillance of altered HLA class I phenotypes in human tumours.
Immunol Today, 18 (1997), pp. 89-95
[18.]
A.M. Kersemaekers, G.G. Kenter, J. Hermans, G.J. Fleuren, M.J. van de Vijver.
Allelic loss and prognosis in carcinoma of the uterine cervix.
Int J Cancer, 79 (1998), pp. 411-417
[19.]
A.B. Mitra, V.V. Murty, R.G. Li, M. Pratap, U.K. Luthra, R.S. Chaganti.
Allelotype analysis of cervical carcinoma.
Cancer Res, 54 (1994), pp. 4481-4487
[20.]
A.B. Mitra, V.V. Murty, V. Singh, R.G. Li, M. Pratap, P. Sodhani, et al.
Genetic alterations at 5p15: a potential marker for progression of precancerous lesions of the uterine cervix.
J Natl Cancer Inst, 87 (1995), pp. 742-745
[21.]
H. Ellegren.
Microsatellites: simple sequences with complex evolution.
Nat Rev Genet, 5 (2004), pp. 435-445
[22.]
C. Dib, S. Faure, C. Fizames, D. Samson, N. Drouot, A. Vignal, et al.
A comprehensive genetic map of the human genome based on 5,264 microsatellites.
Nature, 380 (1996), pp. 152-154
[23.]
L.M. Ramal, I. Maleno, T. Cabrera, A. Collado, A. Ferron, M.A. López-Nevot, et al.
Molecular strategies to define HLA haplotype loss in microdissected tumor cells.
Hum Immunol, 61 (2000), pp. 1001-1012
[24.]
R.K. Saiki, S. Scharf, F. Faloona, K.B. Mullis, G.T. Horn, H.A. Erlich, et al.
Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia.
Science, 230 (1985), pp. 1350-1354
[25.]
R. Carretero, J.M. Romero, F. Ruiz-Cabello, I. Maleno, F. Rodríguez, F.M. Camacho, et al.
Analysis of HLA class I expression in progressing and regressing metastatic melanoma lesions after immunotherapy.
Immunogenetics, 60 (2008), pp. 439-447
[26.]
M. Campoli, C.C. Chang, S. Ferrone.
HLA class I antigen loss, tumor immune escape and immune selection.
Vaccine, 20 (2002 Dec 19), pp. A40-A45
[27.]
M. Campoli, C.C. Chang, S.A. Oldford, A.D. Edgecombe, S. Drover, S. Ferrone.
HLA antigen changes in malignant tumors of mammary epithelial origin: molecular mechanisms and clinical implications.
Breast Dis, 20 (2004), pp. 105-125
[28.]
M. Campoli, S. Ferrone.
HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance.
Oncogene, 27 (2008), pp. 5869-5885
[29.]
C.C. Chang, M. Campoli, S. Ferrone.
HLA class I defects in malignant lesions: what have we learned?.
Keio J Med, 52 (2003), pp. 220-229
[30.]
C.C. Chang, S. Ferrone.
Immune selective pressure and HLA class I antigen defects in malignant lesions.
Cancer Immunol Immunother, (2006 Jun 17),
[31.]
F. Garrido, I. Algarra.
MHC antigens and tumor escape from immune surveillance.
Adv Cancer Res, 83 (2001), pp. 117-158
[32.]
F.M. Marincola, E.M. Jaffee, D.J. Hicklin, S. Ferrone.
Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance.
Adv Immunol, 74 (2000), pp. 181-273
[33.]
B. Seliger, T. Cabrera, F. Garrido, S. Ferrone.
HLA class I antigen abnormalities and immune escape by malignant cells.
Semin Cancer Biol, 12 (2002), pp. 3-13
[34.]
N. Aptsiauri, T. Cabrera, A. García-Lora, M.A. López-Nevot, F. Ruiz-Cabello, F. Garrido.
MHC class I antigens and immune surveillance in transformed cells.
Int Rev Cytol, 256 (2007), pp. 139-189
[35.]
Y. Yang, J. Zhang, F. Miao, J. Wei, C. Shen, Y. Shen, et al.
Loss of heterozygosity at 6p21 underlying [corrected] HLA class I downregulation in Chinese primary esophageal squamous cell carcinomas.
Tissue Antigens, 72 (2008), pp. 105-114
[36.]
Y. Harima, K. Harima, S. Sawada, Y. Tanaka, S. Arita, T. Ohnishi.
Loss of heterozygosity on chromosome 6p21.2 as a potential marker for recurrence after radiotherapy of human cervical cancer.
Clin Cancer Res, 6 (2000), pp. 1079-1085
[37.]
A. Chatterjee, H.A. Pulido, S. Koul, N. Beleno, A. Perilla, H. Posso, et al.
Mapping the sites of putative tumor suppressor genes at 6p25 and 6p21.3 in cervical carcinoma: occurrence of allelic deletions in precancerous lesions.
Cancer Res, 61 (2001), pp. 2119-2123
[38.]
N.N. Mazurenko, A.I. Bliev, B.A. Bidzhieva, D.I. Peskov, N.V. Snigur, E.B. Savinova, et al.
[Loss of heterozygosity at chromosome 6 as a marker of early genetic alterations in cervical intraepithelial neoplasias and microinvasive carcinomas].
Mol Biol (Mosk), 40 (2006), pp. 436-447
[39.]
C.F. Vermeulen, E.S. Jordanova, Y.A. Zomerdijk-Nooijen, N.T. ter Haar, A.A. Peters, G.J. Fleuren.
Frequent HLA class I loss is an early event in cervical carcinogenesis.
Hum Immunol, 66 (2005), pp. 1167-1173
[40.]
H.J. Bontkes, J.M. Walboomers, C.J. Meijer, T.J. Helmerhorst, P.L. Stern.
Specific HLA class I down-regulation is an early event in cervical dysplasia associated with clinical progression.
[41.]
N. Aptsiauri, R. Carretero, A. García-Lora, L.M. Real, T. Cabrera, F. Garrido.
Regressing and progressing metastatic lesions: resistance to immunotherapy is predetermined by irreversible HLA class I antigen alterations.
Cancer Immunol Immunother, 57 (2008), pp. 1727-1733
[42.]
T. Cabrera, E. Lara, J.M. Romero, I. Maleno, L.M. Real, F. Ruiz-Cabello, et al.
HLA class I expression in metastatic melanoma correlates with tumor development during autologous vaccination.
Cancer Immunol Immunother, 56 (2007), pp. 709-717
[43.]
I. Algarra, A. Garcia-Lora, T. Cabrera, F. Ruiz-Cabello, F. Garrido.
The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape.
Cancer Immunol Immunother, 53 (2004), pp. 904-910
[44.]
R. Benítez, D. Godelaine, M.A. López-Nevot, F. Brasseur, P. Jiménez, M. Marchand, et al.
Mutations of the beta2- microglobulin gene result in a lack of HLA class I molecules on melanoma cells of two patients immunized with MAGE peptides.
Tissue Antigens, 52 (1998), pp. 520-529
[45.]
D.J. Hicklin, Z. Wang, F. Arienti, L. Rivoltini, G. Parmiani, S. Ferrone.
beta2-Microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma.
J Clin Invest, 101 (1998), pp. 2720-2729
[46.]
M. Poetsch, B. Kleist.
Loss of heterozygosity at 15q21.3 correlates with occurrence of metastases in head and neck cancer.
Mod Pathol, 19 (2006), pp. 1462-1469
Copyright © 2009. Instituto Nacional de Cancerología
Opciones de artículo