covid
Buscar en
Revista Colombiana de Cancerología
Toda la web
Inicio Revista Colombiana de Cancerología Vías de carcinogénesis colorrectal y sus implicaciones clínicas
Información de la revista
Vol. 16. Núm. 3.
Páginas 170-181 (enero 2011)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 16. Núm. 3.
Páginas 170-181 (enero 2011)
Acceso a texto completo
Vías de carcinogénesis colorrectal y sus implicaciones clínicas
Pathways of Colorectal Carcinogenesis and Their Clinical Implications
Visitas
13204
María C. Sanabria1,2,
Autor para correspondencia
csanabria@cancer.gov.co

Correspondencia María Carolina Sanabria Salas, Grupo de Investigación en Biología del Cáncer, Bogotá, Colombia. Instituto Nacional de Cancerología. Av. 1.a No. 9-85, Bogotá, D. C., Colombia. Tel.:éfono: (57-1) 334 1111, ext. 4203.
, Adriana Umaña2, Martha L. Serrano2, Myriam Sánchez2, Jorge Mesa3, Gustavo A. Hernández4
1 Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, D. C., Colombia
2 Grupo de Investigación en Hormonas, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, D. C., Colombia
3 Departamento de Patología, Instituto Nacional de Cancerología, Bogotá, D. C., Colombia
4 Grupo de Investigación Epidemiológica, Instituto Nacional de Cancerología, Bogotá, D. C., Colombia
Este artículo ha recibido
Información del artículo
Resumen

El cáncer colorrectal (CCR) es la cuarta causa de mortalidad por cáncer en Colombia y en el mundo, en ambos sexos; por esta razón, es considerado un problema de salud pública. El CCR es altamente heterogéneo en su fenotipo y genotipo, lo que está en relación con las diferentes vías de carcinogénesis descritas que implican diferentes mecanismos de progresión y agresividad de la enfermedad. Las vías clásicas, supresora y mutadora, se caracterizan por una serie de alteraciones genéticas relacionadas con los cambios fenotípicos de la progresión morfológica en la secuencia adenoma-carcinoma. Las vías alternas, originadas por mutaciones en los genes, BRAF y KRAS, se relacionan con la progresión de pólipo aserrado a carcinoma. Conocer estas vías es muy importante para comprender la enfermedad de manera integral y profundizar en el estudio de sus mecanismos de control, que incluyen: diagnóstico temprano, tratamiento y seguimiento.

Palabras clave:
Focos de criptas aberrantes
neoplasias colorrectales
pólipos del colon
inestabilidad cromosómica
inestabilidad de microsatélites
Abstract

Colorectal cancer (CRC) is ranked fourth among causes of cancer mortality in Colombia and in the world, for both genders; it is therefore regarded as a public health issue. CRC's phenotype and genotype are highly heterogeneous, a fact related to the various carcinogenic pathways described, and which is also implicated in the different progression mechanisms and the aggressiveness of the disease. The classic pathways, suppressive and mutable, are characterized by a series of genetic alterations related to phenotype changes in the morphologic progression of the adenoma-carcinoma sequence. The alternate pathways, originated by BRAF and KRAS gene mutations, are linked to the serrated polyp progression to carcinoma. Knowledge of these pathways is very important in achieving a fuller understanding of the disease and for broadening the study of mechanisms for its control; these include: early diagnosis, treatment and follow-up.

Key words:
Aberrant crypt foci
colorectal neoplasms
colonic polyps
chromosomal instability
microsatellite instability
El Texto completo está disponible en PDF
Referencias
[1.]
Ferlay J, Shin HR, Bray F, et al. GLOBOCAN 2008, Cancer incidence and mortality worldwide IARC CancerBase No 10 [internet]. 2008 [citado: 16 de agosto de 2012]. Disponible en: http://globocan.iarc.fr.
[2.]
M. Piñeros, C. Pardo, O. Gamboa.
Atlas de mortalidad por cáncer en Colombia.
Imprenta Nacional, (2010),
[3.]
M. van de Wetering, E. Sancho, C. Verweij, et al.
The betacatenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells.
Cell, 111 (2002), pp. 241-250
[4.]
T.A. Graham, A. Humphries, T. Sanders, et al.
Use of methylation patterns to determine expansion of stem cell clones in human colon tissue.
Gastroenterology, 140 (2011), pp. 1241-1250
[5.]
T. Fevr, S. Robine, D. Louvard, et al.
Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells.
Mol Cell Biol, 27 (2007), pp. 7551-7559
[6.]
C. Kosinski, V.S. Li, A.S. Chan, et al.
Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors.
Proc Natl Acad Sci USA, 104 (2007), pp. 15418-15423
[7.]
K.J. Smith, K.A. Johnson, T.M. Bryan, et al.
The APC gene product in normal and tumor cells.
Proc Natl Acad Sci USA, 90 (1993), pp. 2846-2850
[8.]
F.A. Sinicrope, S.B. Ruan, K.R. Cleary, et al.
Bcl-2 and p53 oncoprotein expression during colorectal tumorigenesis.
Cancer Res, 55 (1995), pp. 237-241
[9.]
L. Roncucci, M. Pedroni, F. Vaccina, et al.
Aberrant crypt foci in colorectal carcinogenesis. Cell and crypt dynamics.
Cell proliferation, 33 (2001), pp. 1-18
[10.]
F. Colina, C. Ibarrola.
Protocolo e información sistematizada para los estudios histopatológicos relacionados con el carcinoma Colorrectal.
Rev Esp Patol, 37 (2004), pp. 73-90
[11.]
F. Konishi, B.C. Morson.
Pathology of colorectal adenomas: a colonoscopic survey.
J Clin Pathol, 35 (1982), pp. 830-841
[12.]
T. Higuchi, K. Sugihara, J.R. Jass.
Demographic and pathological characteristics of serrated polyps of colorectum.
Histopathology, 47 (2005), pp. 32-40
[13.]
D. Snover, D. Ahnen, R. Burt.
Serrated polyps of the colon and rectum and serrated (‘hyperplastic’) polyposis.
WHO Classification of Tumours. Pathology and Genetics. Tumours of the Digestive System, 4th,
[14.]
E.E. Torlakovic, J.D. Gómez, D.K. Driman, et al.
Sessile serrated adenoma (SSA) vs. traditional serrated adenoma (TSA).
Am J Surg Pathol, 32 (2008), pp. 21-29
[15.]
B. Iacopetta.
Mini review-Are there two sides to colorectal cancer?.
Int J Cancer, 101 (2002), pp. 403-408
[16.]
F.Y. Li, M.D. Lai.
Colorectal cancer, one entity or three.
J Zhejiang Univ Sci B, 10 (2009), pp. 219-229
[17.]
C. Azzoni, L. Bottarelli, N. Campanini, et al.
Distinct molecular pat terns based on proximal and distal sporadic colorectal cancer: arguments for different mechanisms in the tumorigenesis.
Int J Colorectal Dis, 22 (2007), pp. 115-126
[18.]
O. Delattre, S. Olschwang, D.J. Law, et al.
Multiple genetic alterations in distal and proximal colorectal cancer.
Lancet, 2 (1989), pp. 353-356
[19.]
K. Fujita, H. Yamamoto, T. Matsumoto, et al.
Sessile serrated adenoma with early neoplastic progression: a clinicopathologic and molecular study.
Am J Surg Pathol, 35 (2011), pp. 295-304
[20.]
N. Hawkins, M. Norrie, K. Cheong, et al.
CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability.
Gastroenterology, 122 (2002), pp. 1376-1387
[21.]
L.U. Liu, P.R. Holt, V. Krivosheyev, et al.
Human right and left colon differ in epithelial cell apoptosis and in expression of Bak, a pro-apoptotic Bcl-2 homologue.
Gut, 45 (1999), pp. 45-50
[22.]
A. Reichmann, B. Levin, P. Martin.
Human large-bowel cancer: correlation of clinical and histopathological features with banded chromosomes.
Int J Cancer, 29 (1982), pp. 625-629
[23.]
K. Søreide, B.S. Nedrebø, J.C. Knapp, et al.
Evolving molecular classification by genomic and proteomic biomarkers in colorectal cancer: potential implications for the surgical oncologist.
Surgical Oncology, 18 (2009), pp. 31-50
[24.]
M. van Puijenbroek.
Molecular pathology of colorectal cancer predisposing síndromes.
Leiden University, (2008),
[25.]
M.J. Gunter, M.F. Leitzmann.
Obesity and colorectal cancer: epidemiology, mechanisms and candidate genes.
J Nutr Biochem, 17 (2006), pp. 145-156
[26.]
K.G. Hauret, R.M. Bostick, C.E. Matthews, et al.
Physical activity and reduced risk of incident sporadic colorectal adenomas: observational support for mechanisms involving energy balance and inflammation modulation.
Am J Epidemiol, 159 (2004), pp. 983-992
[27.]
K. Curtin, R.K. Wolff, J.S. Herrick, et al.
Exploring multilocus associations of inflammation genes and colorectal cancer risk using hapConstructor.
BMC Med Genet, 11 (2010), pp. 170
[28.]
R.S. Houlston, J. Cheadle, S.E. Dobbins, et al.
Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33.
Nat Genet, 42 (2010), pp. 973-977
[29.]
R.S. Houlston, I.P.M. Tomlinson.
Polymorphisms and colorectal tumor risk.
Gastroenterology, 121 (2001), pp. 282-301
[30.]
S. Kury, B. Buecher, S. Robiou-du-Pont, et al.
Low-penetrance alleles predisposing to sporadic colorectal cancers: a French case-controlled genetic association study.
BMC Cancer, 8 (2008), pp. 326
[31.]
M.M. Pomerantz, N. Ahmadiyeh, L. Jia, et al.
The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer.
Nat Genet, 41 (2009), pp. 882-884
[32.]
S. von Holst, S. Picelli, D. Edler, et al.
Association studies on 11 published colorectal cancer risk loci.
Br J Cancer, 103 (2010), pp. 575-580
[33.]
E.L. Webb, M.F. Rudd, G.S. Sellick, et al.
Search for low penetrance alleles for colorectal cancer through a scan of 1467 non-synonymous SNPs in 2575 cases and 2707 controls with validation by kin-cohort analysis of 14 704 first-degree relatives.
Hum Mol Genet, 15 (2006), pp. 3263-3271
[34.]
M.T. Galiano.
Cáncer colorrectal (CCR).
Rev Colomb Gastroenterol, 20 (2005), pp. 43-53
[35.]
T.J. Eide.
Prevalence and morphological features of adenomas of the large intestine in individuals with and without colorectal carcinoma.
Histopathology, 10 (1986), pp. 111-118
[36.]
B. Vogelstein, E.R. Fearon, S.R. Hamilton, et al.
Genetic alterations during colorectal-tumor development.
N Eng J Med, 319 (1988), pp. 525-532
[37.]
B. Liu, N.C. Nicolaides, S. Markowitz, et al.
Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability.
Nat Genet, 9 (1995), pp. 48-55
[38.]
A. Moran, P. Ortega, C. de Juan, et al.
Differential colorectal carcinogenesis: Molecular basis and clinical relevance.
World J Gastrointest Oncol, 2 (2010), pp. 151-158
[39.]
I.J. Kim, H.C. Kang, S.G. Jang, et al.
Oligonucleotide microarray analysis of distinct gene expression patterns in colorectal cancer tissues harboring BRAF and K-ras mutations.
Carcinogenesis, 27 (2006), pp. 392-404
[40.]
A. Scholer-Dahirel, M.R. Schlabach, A. Loo, et al.
Maintenance of adenomatous polyposis coli (APC) - mutant colorectal cancer is dependent on Wnt /beta-catenin signaling.
Proc Natl Acad Sci USA, 108 (2011), pp. 17135-17140
[41.]
P. Yuan, M.H. Sun, J.S. Zhang, et al.
APC and K-ras gene mutation in aberrant crypt foci of human colon.
World J Gastroenterol, 7 (2001), pp. 352-356
[42.]
K.M. Haigis, K.R. Kendall, Y. Wang, et al.
Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon.
Nat Genet, 40 (2008), pp. 600-608
[43.]
E.R. Fearon, K.R. Cho, J.M. Nigro, et al.
Identification of a chromosome 18q gene that is altered in colorectal cancers.
Science, 247 (1990), pp. 49-56
[44.]
C. Gallione, A.S. Aylsworth, J. Beis, et al.
Overlapping spectra of SMAD4 mutations in juvenile polyposis (JP) and JP-HHT syndrome.
Am J Med Genet A, 152A (2010), pp. 333-339
[45.]
A. Herbst, G.T. Bommer, L. Kriegl, et al.
ITF-2 is disrupted via allelic loss of chromosome 18q21, and ITF-2B expression is lost at the adenoma-carcinoma transition.
Gastroenterology, 137 (2009), pp. 639-648
[46.]
K. Hibi, H. Mizukami, A. Shirahata, et al.
Aberrant methylation of the netrin-1 receptor genes UNC5C and DCC detected in advanced colorectal cancer.
World J Surg, 33 (2009), pp. 1053-1057
[47.]
D. Langeveld, W.A. van Hattem, W.W. de Leng, et al.
SMAD4 immunohistochemistry reflects genetic status in juvenile polyposis syndrome.
Clin Cancer Res, 16 (2010), pp. 4126-4134
[48.]
R. Kamada, T. Nomura, C.W. Anderson, et al.
Cancerassociated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation.
J Biol Chem, 286 (2011), pp. 252-258
[49.]
S. Kouidou, A. Malousi, N. Maglaveras.
Li-Fraumeni and Li- Fraumeni-like syndrome mutations in p53 are associated with exonic methylation and splicing regulatory elements.
Mol Carcinog, 48 (2009), pp. 895-902
[50.]
T. Cooke, N. Kirkham, D.H. Stainthorp, et al.
Detection of early neoplastic changes in experimentally induced colorectal cancer using scanning electron microscopy and cell kinetic studies.
Gut, 25 (1984), pp. 748-755
[51.]
Y. Hu, R.K. Le Leu, G.P. Young.
Detection of K-ras mutations in azoxymethane-induced aberrant crypt foci in mice using LNA-mediated real-time PCR clamping and mutantspecific probes.
[52.]
M. Ochiai, M. Ushigome, K. Fujiwara, et al.
Characterization of dysplastic aberrant crypt foci in the rat colon induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine.
Am J Pathol, 163 (2003), pp. 1607-1614
[53.]
I.J. Kim, H.C. Kang, J.H. Park, et al.
Development and applications of a beta-catenin oligonucleotide microarray: betacatenin mutations are dominantly found in the proximal colon cancers with microsatellite instability.
Clin Cancer Res, 9 (2003), pp. 2920-2925
[54.]
R.F. Souza, S. Wang, M. Thakar, et al.
Expression of the wildtype insulin-like growth factor II receptor gene suppresses growth and causes death in colorectal carcinoma cells.
Oncogene, 18 (1999), pp. 4063-4068
[55.]
M. Yashiro, K. Hirakawa, C.R. Boland.
Mutations in TGFbeta-RII and BAX mediate tumor progression in the later stages of colorectal cancer with microsatellite instability.
BMC Cancer, 10 (2010), pp. 303
[56.]
S. Narayan, D. Roy.
Role of APC and DNA mismatch repair genes in the development of colorectal cancers.
Mol Cancer, 2 (2003), pp. 41
[57.]
W.S. Samowitz, J.A. Holden, K. Curtin, et al.
Inverse relationship between microsatellite instability and K-ras and p53 gene alterations in colon cancer.
Am J Pathol, 158 (2001), pp. 1517-1524
[58.]
S. Olschwang, R. Hamelin, P. Laurent-Puig, et al.
Alternative genetic pathways in colorectal carcinogenesis.
Proceedings of the National Academy of Sciences of the United States of America, pp. 12122
[59.]
K.M. Kim, E.J. Lee, Y.H. Kim, et al.
KRAS mutations in traditional serrated adenomas from Korea herald an aggressive phenotype.
Am J Surg Pathol, 34 (2010), pp. 667-675
[60.]
K. Azimuddin, J.J. Stasik, I.T. Khubchandani, et al.
Hyperplastic polyps: “more than meets the eye”? Report of sixteen cases.
Dis Colon Rectum, 43 (2000), pp. 1309-1313
[61.]
T.A. Longacre, C.M. Fenoglio-Preiser.
Mixed hyperplastic adenomatous polyps/serrated adenomas. A distinct form of colorectal neoplasia.
Am J Surg Pathol, 14 (1990), pp. 524-537
[62.]
N.J. Hawkins, R.L. Ward.
Sporadic colorectal cancers with microsatellite instability and their possible origin in hyperplastic polyps and serrated adenomas.
J Natl Cancer Inst, 93 (2001), pp. 1307-1313
[63.]
P. Jeevaratnam, D.S. Cottier, P.J. Browett, et al.
Familial giant hyperplastic polyposis predisposing to colorectal cancer: a new hereditary bowel cancer syndrome.
[64.]
M.J. O’Brien, S. Yang, C. Mack, et al.
Comparison of microsatellite instability, CpG island methylation phenotype. BRAF and KRAS status in serrated polyps and traditional adenomas indicates separate pathways to distinct colorectal carcinoma end points.
Am J Surg Pathol., 30 (2006), pp. 1491-1501
[65.]
M.F. Kalady, A. Jarrar, B. Leach, et al.
Defining phenotypes and cancer risk in hyperplastic polyposis syndrome.
Dis Colon Rectum, 54 (2011), pp. 164-170
[66.]
F.I. Lu, W. van Niekerk de, D. Owen, et al.
Longitudinal outcome study of sessile serrated adenomas of the colorectum: an increased risk for subsequent right-sided colorectal carcinoma.
Am J Surg Pathol, 34 (2010), pp. 927-934
[67.]
E. Musulén, R. López-Martos, C. Sanz, et al.
Clinicopathological and morphological characteristics of colorectal carcinoma in hyperplastic polyposis syndrome.
Rev Esp Patol, 44 (2011), pp. 75-82
[68.]
L. Sarli, L. Bottarelli, G. Bader, et al.
Association between recurrence of sporadic colorectal cancer, high level of microsatellite instability, and loss of heterozygosity at chromosome 18q.
Dis Colon Rectum, 47 (2004), pp. 1467-1482
[69.]
R. Gryfe, H. Kim, E.T. Hsieh, et al.
Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer.
N Engl J Med, 342 (2000), pp. 69-77
[70.]
W.S. Samowitz, K. Curtin, K.N. Ma, et al.
Microsatellite instability in sporadic colon cancer is associated with an improved prognosis at the population level.
Cancer Epidemiol Biomarkers Prev, 10 (2001), pp. 917-923
[71.]
X.Q. Liu, A. Rajput, L. Geng, et al.
Restoration of transforming growth factor-beta receptor II expression in colon cancer cells with microsatellite instability increases metastatic potential in vivo.
J Biol Chem, 286 (2011), pp. 16082-16090
[72.]
K. Shima, T. Morikawa, M. Yamauchi, et al.
TGFBR2 and BAX mononucleotide tract mutations, microsatellite instability, and prognosis in 1072 colorectal cancers.
[73.]
H. Elsaleh, B. Iacopetta.
Microsatellite instability is a predictive marker for survival benefit from adjuvant chemotherapy in a population-based series of stage III colorectal carcinoma.
Clin Colorectal Cancer, 1 (2001), pp. 104-109
[74.]
S. Popat, R. Hubner, R.S. Houlston.
Systematic review of microsatellite instability and colorectal cancer prognosis.
J Clin Oncol, 23 (2005), pp. 609-618
[75.]
P. Benatti, R. Gafa, D. Barana, et al.
Microsatellite instability and colorectal cancer prognosis.
Clin Cancer Res, 11 (2005), pp. 8332-8340
[76.]
C.M. Ribic, D.J. Sargent, M.J. Moore, et al.
Tumor microsatellite- instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer.
N Engl J Med, 349 (2003), pp. 247-257
[77.]
A. Shaukat, M. Arain, B. Thaygarajan, et al.
Is BRAF mutation associated with interval colorectal cancers?.
Dig Dis Sci, 55 (2010), pp. 2352-2356
[78.]
D.E. Aust, G.B. Baretton.
Serrated polyps of the colon and rectum (hyperplastic polyps, sessile serrated adenomas, traditional serrated adenomas, and mixed polyps)-proposal for diagnostic criteria.
Virchows Arch, 457 (2010), pp. 291-297
[79.]
C.S. Huang, F.A. Farraye, S. Yang, et al.
The clinical significance of serrated polyps.
Am J Gastroenterol, 106 (2010), pp. 229-240
[80.]
R. Lazarus, O.E. Junttila, T.J. Karttunen, et al.
The risk of metachronous neoplasia in patients with serrated adenoma.
Am J Clin Pathol, 123 (2005), pp. 349-359
[81.]
J. Young, M. Jenkins, S. Parry, et al.
Serrated pathway colorectal cancer in the population: genetic consideration.
Gut, 56 (2007), pp. 1453-1459
[82.]
J. Lascorz, A. Forsti, B. Chen, et al.
Genome-wide association study for colorectal cancer identifies risk polymorphisms in German familial cases and implicates MAPK signalling pathways in disease susceptibility.
Carcinogenesis, 31 (2010), pp. 1612-1619
[83.]
A.M. Pittman, S. Naranjo, S.E. Jalava, et al.
Allelic variation at the 8q23.3 colorectal cancer risk locus functions as a cis-acting regulator of EIF3H.
PLoS Genet, (2010), pp. 6
[84.]
A. Tenesa, S.M. Farrington, J.G. Prendergast, et al.
Genomewide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21.
Nat Genet, 40 (2008), pp. 631-637
[85.]
I. Tomlinson, E. Webb, L. Carvajal-Carmona, et al.
A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21.
Nat Genet, 39 (2007), pp. 984-988
[86.]
I.P. Tomlinson, E. Webb, L. Carvajal-Carmona, et al.
A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3.
Nat Genet, 40 (2008), pp. 623-630
[87.]
S. Tuupanen, M. Turunen, R. Lehtonen, et al.
The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling.
Nat Genet, 41 (2009), pp. 885-890
[88.]
B.W. Zanke, C.M. Greenwood, J. Rangrej, et al.
Genomewide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24.
Nat Genet, 39 (2007), pp. 989-994
[89.]
F. Bertucci, S. Salas, S. Eysteries, et al.
Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters.
Oncogene, 23 (2004), pp. 1377-1391
[90.]
A. Carrer, S. Zacchigna, A. Balani, et al.
Expression profiling of angiogenic genes for the characterisation of colorectal carcinoma.
Eur J Cancer, 44 (2008), pp. 1761-1769
[91.]
O. Galamb, F. Sipos, N. Solymosi, et al.
Diagnostic mRNA expression patterns of inflamed, benign, and malignant colorectal biopsy specimen and their correlation with peripheral blood results.
Cancer Epidemiol Biomarkers Prev, 17 (2008), pp. 2835-2845
[92.]
O.K. Glebov, L.M. Rodríguez, P. Soballe, et al.
Gene expression patterns distinguish colonoscopically isolated human aberrant crypt foci from normal colonic mucosa.
Cancer Epidemiology Biomarkers & Prevention, 15 (2006), pp. 2253-2262
[93.]
M. Han, C.T. Liew, H.W. Zhang, et al.
Novel blood-based, five-gene biomarker set for the detection of colorectal cancer.
Clin Cancer Res, 14 (2008), pp. 455-460
[94.]
R. Mazzanti, M. Solazzo, O. Fantappie, et al.
Differential expression proteomics of human colon cancer.
Am J Physiol Gastrointest Liver Physiol, 290 (2006), pp. G1329-G1338
[95.]
A.E. Ibrahim, M.J. Arends, A.L. Silva, et al.
Sequential DNA methylation changes are associated with DNMT3B overexpression in colorectal neoplastic progression.
[96.]
C.P. Vaughn, A.R. Wilson, W.S. Samowitz.
Quantitative evaluation of CpG island methylation in hyperplastic polyps.
Mod Pathol, 23 (2010), pp. 151-156
Copyright © 2012. Instituto Nacional de Cancerología
Descargar PDF
Opciones de artículo