metricas
covid
Buscar en
Revista Colombiana de Psiquiatría
Toda la web
Inicio Revista Colombiana de Psiquiatría Aproximación a una neurobiología de las psicoterapias
Información de la revista
Vol. 39. Núm. 3.
Páginas 569-587 (septiembre 2010)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 39. Núm. 3.
Páginas 569-587 (septiembre 2010)
Artículos de revisión/actualización
Acceso a texto completo
Aproximación a una neurobiología de las psicoterapias
The Neurobiology of Psychotherapy
Visitas
946
Andrés Felipe Correa Palacio1,
Autor para correspondencia
correa.af@gmail.com

Correspondencia: Andrés Felipe Correa Palacio, Calle 32F N° 74D-95, Medellin, Colombia
, Juliana Gómez Franco2
1 Médico residente de tercer año de Psiquiatría, Universidad de Antioquia, Medellín, Colombia
2 Médica psiquiatra. Especialista en Terapia Cognitiva. Profesora del Departamento de Psiquiatría, Universidad de Antioquia, Medellín, Colombia
Este artículo ha recibido
Información del artículo
Resumen
Introducción

A pesar de la efectividad de diversas psicoterapias, poco se sabe sobre sus mecanismos de acción, específicamente en la esfera neurobiológica. Desde Sigmund Freud hasta Erick Kandel, han existido varios intentos por estudiar los correlatos neurales de las intervenciones psicoterapéuticas. Hasta ahora se concibe como un proceso de aprendizaje de nuevas formas de percibir el mundo, por lo que involucra estructuras encefálicas relacionadas con la memoria, la función ejecutiva, la percepción de sí mismo y la regulación emocional. Las pruebas electroquímicas y las neuroimágenes son métodos de aproximación al funcionamiento neuronal que pueden ayudar a entender mejor la relación psicoterapia-cerebro.

Método

Se revisan algunos estudios que demuestran una relación empírica entre diferentes técnicas psicoterapéuticas y un cambio observable en pruebas de laboratorio o neuroimágenes en pacientes con algunos trastornos psiquiátricos.

Resultados y conclusión

Pese a las limitaciones de los estudios, como muestras pequeñas y la heterogeneidad en la metodología, ahora es más evidente que la psicoterapia funciona con un mecanismo biológico, expresado en cambios neurofuncionales. Ello aporta sólidos argumentos al debate permanente en filosofía de la mente sobre la dicotomía mente-cerebro que demuestran una implausibilidad ontológica de esta dicotomía y que permiten a la psicología y a la psiquiatría enriquecerse del desarrollo de las neurociencias básicas.

Palabras clave:
psicoterapia
trastornos mentales
neurociencias
revisión
Abstract
Introduction

Despite the recognized effectiveness of diverse psychotherapies, very little is known about their action mechanisms specifically from a neurobiological point of view. Since Sigmund Freud to Eric Kandel, there have been several attempts to study the neural correlates of psychotherapeutic interventions. So far they have been conceived as a learning process of new ways to perceive the world, since they involve encephalic structures related to memory, executive function, self-perception, and emotional regulation. Neuroimaging and electro-chemical testing are methods of approaching neuronal functioning that could help to better understand the relationship between psychotherapy and the brain.

Method

A contextual framework is proposed in this article in order to review some of the studies that demonstrate an empiric relation between different psychotherapeutic techniques and an observable change in laboratory parameters or neuroimaging findings in patients with some psychiatric disorders.

Results and Conclusions

Despite the limitations of the studies such as small sample sizes and heterogeneous methodology, there is now far more clear evidence that psychotherapy works with a cerebral mechanism expressed in neurofunctional changes that provide solid arguments to the permanent debate in Philosophy of Mind about the mind-brain dichotomy, showing the ontological implausibility of this dichotomy, and the need for different epistemological levels that will allow Psychology and Psychiatry to benefit from the development of the neurosciences.

Key words:
Psychotherapy
mental disorders
neurosciences
review
El Texto completo está disponible en PDF
Referencias
[1]
J March, S Silva, S Petrycki, J Curry, K Wells, J Fairbank, et al.
Fluoxetine, cognitive-behavioral therapy, and their combination for adolescents with depression: Treatment for Adolescents With Depression Study (TADS) randomized controlled trial.
JAMA, 292 (2004), pp. 807-820
[2]
A Etkin, C Pittenger, HJ Polan, ER Kandel.
Toward a neurobiology of psychotherapy: basic science and clinical applications.
J Neuropsychiatry Clin Neurosci, 17 (2005), pp. 145-158
[3]
ER Kandel.
Psychotherapy and the single synapse: the impact of psychiatric thought on neurobiological research.
N England J Med, 301 (1979), pp. 1028-1037
[4]
ER Kandel.
Biology and the future of psychoanalysis: a new intellectual framework for psychiatry revisited.
Am J Psychiatry, 156 (1999), pp. 505-524
[5]
R Luque, JM Villagrán.
Bases epistemológicas de la teoría y la práctica psiquiátricas.
Psicopatología descriptiva,
[6]
NC Andreasen.
Linking mind and brain in the study of mental illnesses: a project for a scientific psychopathology.
Science, 275 (1997), pp. 1586-1593
[7]
DJ Spiegel.
The developing mind: how relationships and the brain interact to shape who we are, Guilford, (1999),
[8]
M Beauregard, J Lévesque, P Bourgouin.
Neural correlates of conscious self-regulation of emotion.
J Neurosci, 21 (2001), pp. RC165
[9]
KS Blair, BW Smith, DG Mitchell, J Morton, M Vythilingam, L Pessoa, et al.
Modulation of emotion by cognition and cognition by emotion.
Neuroimage, 35 (2007), pp. 430-2007
[10]
NA Harrison, HD Critchley.
Affective neuroscience and psychiatry.
Br J Psychiatry, 191 (2007), pp. 192-194
[11]
JD Coplan, RC Trost, MJ Owens, TB Cooper, JM Gorman, CB Nemeroff, et al.
Cerebrospinal fluid concentrations of somatostatin and biogenic amines in grown primates reared by mothers exposed to manipulated foraging conditions.
Arch Gen Psychiatry, 55 (1998), pp. 473-477
[12]
D Liu, J Diorio, JC Day, DD Francis, MJ Meaney.
Maternal care, hippocampal synaptogenesis and cognitive development in rats.
Nat Neurosci, 3 (2000), pp. 799-806
[13]
B Grosjean, GE Tsai.
NMDA neurotransmission as a critical mediator of borderline personality disorder.
J Psychiatry Neurosci, 32 (2007), pp. 103-115
[14]
ER Kandel.
The molecular biology of memory storage: a dialogue between genes and synapses.
Science, 294 (2001), pp. 1030-1038
[15]
DH Edwards, N Spitzer.
6. Social dominance and serotonin receptor genes in crayfish.
Curr Top Dev Biol, 74 (2006), pp. 177-199
[16]
B Grosjean.
From sypnase to psychotherapy: the fascinating evolution of neuroscience.
Am J Psychother, 59 (2005), pp. 181-197
[17]
CA Ocampo.
La psicoterapia como tratamiento biológico.
Rev Col Psiquiatría, 25 (1996), pp. 116-128
[18]
LR Squire.
Memory systems of the brain: a brief history and current perspective.
Neurobiol Learn Mem, 82 (2004), pp. 171-177
[19]
B Bogerts.
Plasticity of brain structure and function as the neurobiological principle of psychotherapy.
Z Klin Psychol Psychiatr Psychother, 44 (1996), pp. 243-252
[20]
D Centonze, A Siracusano, P Calabresi, G Bernardi.
Removing pathogenic memories: a neurobiology of psychotherapy.
Mol Neurobiol, 32 (2005), pp. 123-132
[21]
DY Liggan, J Kay.
Some neurobiological aspects of psychotherapy: a review.
J Psychother Pract Res, 8 (1999), pp. 103-114
[22]
AJ Gerber, BS Peterson.
Measuring transference phenomena with fMRI.
J Am Psychoanal Assoc, 54 (2006), pp. 1319-1325
[23]
GO Gabbard.
A neurobiologically informed perspective on psychotherapy.
Br J Psychiatry, 177 (2000), pp. 117-122
[24]
F Benedetti, SH Mayberg, TD Wager, CH Stohler, JK Zubieta.
Neurobiological mechanisms of the placebo effect.
J Neurosci, 25 (2005), pp. 10390-10402
[25]
J Lévesque, Y Joanette, B Mensour, DG Beaudoin, JM Leroux, P Bourgouin, et al.
Neural basis of emotional self-regulation in childhood.
Neuroscience, 129 (2004), pp. 361-369
[26]
J Levesque, F Fanny Eugene, Y Joanette, V Paquette, B Mensour, G Beaudoin, et al.
Neural circuitry underlying voluntary suppression of sadness.
Biol Psychiatry, 53 (2003), pp. 502-510
[27]
L Pessoa.
On the relationship between emotion and cognition.
Nat Rev Neurosci, 9 (2008), pp. 148-158
[28]
O Gillath, SA Bunge, PR Shaver, C Wendelken, M Mikulincer.
Attachment-style differences in the ability to suppress negative thoughts: exploring the neural correlats.
Neuroimage, 28 (2005), pp. 835-847
[29]
PA Frewen, DJ Dozois, RA Lanius.
Neuroimaging studies of psychological interventions for mood and anxiety disorders: empirical and methodological review.
Clin Psychol Rev, 28 (2008), pp. 228-246
[30]
J Levesque, F Eugene, Y Joanette, V Paquette, B Mensour, G Beaudoin, et al.
Neural circuitry underlying voluntary suppression of sadness.
Biol Psychiatry, 53 (2003), pp. 502-510
[31]
KN Ochsner, SA Bunge, JJ Gross, JD Gabrieli.
Rethinking feelings: an FMRI study of the cognitive regulation of emotion.
J Cogn Neurosci, 14 (2002), pp. 1215-1229
[32]
MK Shear, AJ Fyer, G Ball, S Josephson, M Fitzpatrick, B Gitlin, et al.
Vulnerability to sodium lactate in panic disorder patients given cognitive-behavioral therapy.
Am J Psychiatry, 148 (1991), pp. 795-797
[33]
R Joffe, Z Segal, W Singer.
Change in thyroid hormone levels following response to cognitive therapy for major depression.
Am J Psychiatry, 153 (1996), pp. 411-413
[34]
ME Thase, AL Fasiczka, SR Berman, AD Simons, CF Reynolds 3rd.
Electroencephalographic sleep profiles before and after cognitive behavior therapy of depression.
Arch Gen Psychiatry, 55 (1998), pp. 138-144
[35]
SM Lehto, T Tolmunen, M Joensuu, PI Saarinen, M Valkonen-Korhonen, R Vanninen, et al.
Changes in mid-brain serotonin transporter availability in atypically depressed subjects after one year of psychotherapy.
Prog Neuro-Psychopharmacol Biol Psychiatry, 32 (2008), pp. 229-237
[36]
LR Baxter Jr, JM Schwartz, KS Bergman, MP Szuba, BH Guze, JC Mazziotta, et al.
Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessive-compulsive disorder.
Arch Gen Psychiatry, 49 (1992), pp. 681-689
[37]
JM Schwartz, PW Stoessel, LR Baxter Jr, KM Martin, ME Phelps.
Systematic changes in cerebral glucose metabolic rate after successful behavior modification treatment of obsessive-compulsive disorder.
Arch Gen Psychiatry, 53 (1996), pp. 109-113
[38]
E Nakatani, A Nakgawa, Y Ohara, S Goto, N Uozumi, M Iwakiri, et al.
Effects of behavior therapy on regional cerebral blood flow in obsessive–compulsive disorder.
Psychiatry Res, 124 (2003), pp. 113-120
[39]
T Nakao, A Nakagawa, T Yoshiura, E Nakatani, M Nabeyama, C Yoshizato, et al.
Brain activation of patients with obsessive-compulsive disorder during neuropsychological and symptom provocation tasks before and after symptom improvement: a functional magnetic resonance imaging study.
Biol Psychiatry, 57 (2005), pp. 901-910
[40]
SD Martin, E Martin, SS Rai, MA Richardson, R Royall.
Brain blood flow changes in depressed patients treated with interpersonal psychotherapy or venlafaxine hydrochloride.
Arch Gen Psychiatry, 58 (2001), pp. 641-648
[41]
SH Kennedy, JZ Konarski, ZB Segal, MA Lau, PJ Bieling, RS McIntyre, et al.
Differences in brain glucose metabolism between responders to CBT and venlafaxine in a 16-week randomized controlled trial.
Am J Psychiatry, 164 (2007), pp. 778-788
[42]
AL Brody, S Saxena, P Stoessel, LA Gillies, LA Fairbanks, S Alborzian, et al.
Regional brain metabolic changes in patients with major depression treated with either paroxetine or interpersonal therapy: preliminary findings.
Arch Gen Psychiatry, 58 (2001), pp. 631-640
[43]
K Goldapple, Z Segal, C Garson, M Lau, P Bieling, S Kennedy, et al.
Modulation of cortical–limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy.
Arch Gen Psychiatry, 61 (2004), pp. 34-2004
[44]
J Prasko, J Horacek, R Zalesky, M Kopecek, T Novak, B Paskova, et al.
The change of regional brain metabolism (18FDG PET) in panic disorder during he treatment with cognitive behavioral therapy or antidepressants.
Neurol Endocrinol Lett, 25 (2004), pp. 340-348
[45]
Y Sakai, H Kumano, M Nishikawa, Y Sakano, H Kaiya, E Imabayashi, et al.
Changes in cerebral glucose utilization in patients with panic disorder treated with cognitive–behavioral therapy.
Neuroimage, 33 (2006), pp. 218-226
[46]
V Paquette, J Levesque, B Mensour, JM Leroux, G Beaudoin, P Bourgouin, et al.
“Change the mind and you change the brain”: effects of cognitive-behavioral therapy on the neural correlates of spider phobia.
Neuroimage, 18 (2003), pp. 401-409
[47]
T Straube, M Glauer, S Dilger, HJ Mentzel, WH Miltner.
Effects of cognitive-behavioral therapy on brain activation in specific phobia.
Neuroimage, 29 (2006), pp. 125-135
[48]
T Furmark, M Tillfors, I Marteinsdottir, H Fischer, A Pissiota, B Långström, et al.
Common changes in cerebral blood flow in patients with social phobia treated with citalopram or cognitive-behavioral therapy.
Arch Gen Psychiatry, 59 (2002), pp. 425-433
[49]
DE Linden.
Brain imaging and psychotherapy: methodological considerations and practical implications.
Eur Arch Psychiatry Clin Neurosci, 258 Suppl 5 (2008), pp. 71-75
[50]
M Beauregard.
Mind does really matter: Evidence from neuroimaging studies of emotional self-regulation, psychotherapy, and placebo effect.
Prog Neurobiol, 81 (2007), pp. 218-236

Conflictos de interés: los autores no reportan conflictos de interés en este artículo.

Copyright © 2010. Asociación Colombiana de Psiquiatría
Descargar PDF
Opciones de artículo