metricas
covid
Buscar en
Revista Española de Cirugía Ortopédica y Traumatología
Toda la web
Inicio Revista Española de Cirugía Ortopédica y Traumatología Osteogénesis terapéutica en cirugía del raquis. Bases científicas de la artr...
Información de la revista
Vol. 49. Núm. S1.
Páginas 46-58 (octubre 2005)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 49. Núm. S1.
Páginas 46-58 (octubre 2005)
Acceso a texto completo
Osteogénesis terapéutica en cirugía del raquis. Bases científicas de la artrodesis vertebral. II: fundamentos biológicos
Therapeutic osteogenesis in spinal surgery. Scientific basis of vertebral fusion. II: Biological principles
Visitas
2177
E.. Guerado Parraa,
Autor para correspondencia
eguerado@hcs.es

Correspondencia: E. Guerado Parra. Servicio de Cirugía Ortopédica y Traumatología. Hospital Costa del Sol. Universidad de Málaga. 29600. Marbella (Málaga). eguerado@hcs.es
, M.. Godino Izquierdoa, J.. Andrades Gómezb, J.. Becerra Ratiab
a Servicio de Cirugía Ortopédica y Traumatología. Hospital Costa del Sol. Departamento de Cirugía. Universidad de Málaga. Marbella. Málaga
b Departamento de Biología Celular y Fisiología. Universidad de Málaga. Málaga
Este artículo ha recibido
Información del artículo
Introducción

Una artrodesis sobre raquis tiene dos pasos claramente diferenciados: la colocación de un sistema de fijación y la adición de una sustancia osteogénica, generalmente tejido óseo, que pretende estimular la formación de hueso entre los niveles deseados.

Biología molecular de las BMP

Las proteínas morfogenéticas del hueso (BMP) participan en la multiplicación, diferenciación, muerte programada (apoptosis) y morfogénesis.

Sustitutos óseos

El sustituto óseo ideal siempre ha sido el injerto autólogo, que provee células vivas del propio individuo y factores de crecimiento (FC), además de hueso propiamente dicho. Todos los nuevos sustitutos que han ido apareciendo deben cumplir con las condiciones fundamentals del autoinjerto, pero no con sus inconvenientes, entre los que se encuentran la morbilidad de la zona donante y la cantidad limitada de la que se dispone.

Factores de crecimiento

Aunque actualmente existen publicaciones donde se muestra que la administración de FC en la artrodesis vertebral estimula la osteogénesis, se desconoce la forma de administración con relación a la dosis, transportadores o momento de administrar cada factor.

Terapia génica

La ingeniería genética, aun siendo una apuesta de futuro importante, necesita todavía mucho camino para ser una realidad en la aplicación para la promoción de la osteogénesis terapéutica.

Palabras clave:
raquis
cirugía
osteogénesis
biología
Introduction

Spinal fusion has two clearly differentiated steps: a fixation system and addition of an osteogenic substance, generally bone tissue, intended to stimulate bone formation between levels.

Molecular biology of BMP

BMPs participate in multiplication, differentiation, programmed death (apoptosis), and morphogenesis.

Bone substitutes

The ideal bone substitute has always been an autologous graft, which supplies living cells and GF from the host, in addition to bone. Any new substitute should meet the basic conditions of an autograft without its drawbacks, which include damage to the harvest area and a limited harvest.

Growth factors

Although it has been reported that the administration of growth factors stimulates osteogenesis during spinal fusion, the specifics of administration such as optimal dose and suitable transporters and timing are unknown for each factor.

Gene therapy

Genetic engineering, although an important option for the future, still requires work to become a reality in therapeutic osteogenesis.

Keywords:
spine
surgery
osteogenesis
biology
El Texto completo está disponible en PDF
Bibliografía
[1]
Ehler D.M., Vaccaro A.R..
The use of allograft bone in lumbar spine surgery..
Clin Orthop. , 371 (2000), pp. 38-45
[2]
Clark R.A.F..
The molecular and cellular biology of wound repair..
The molecular and cellular biology of wound repair., (1996),
[3]
Hollinger J., Wong M.E..
The integrated processes of hard tissue regeneration with special emphasis on fracture healing..
Oral Surg. , 85 (1996), pp. 594-606
[4]
Reddi A.H..
Regulation of cartilage and bone differentiation by bone morphogenetic proteins..
Curr Opinion Cell Biol. , 4 (1992), pp. 850-855
[5]
Reddi A.H..
Bone and cartilage morphogenesis: cell biology to clinical applications..
Curr Opin Genet Dev. , 4 (1994), pp. 737-744
[6]
Sakou T..
Bone morphogenetic proteins: from basic studies to clinical approaches..
Bone. , 22 (1998), pp. 591-603
[7]
Onishi T., Ishidou Y., Nagamine T., Yone K., Imamura T., Kato M., et-al..
Distinct and overlapping patterns of localization of bone morphogenetic protein (BMP) family members and a BMP type II receptor during fracture healing in rats..
Bone. , 22 (1998), pp. 605-612
[8]
Heldin C.H., Miyazono K., ten Dijke P..
TGF-beta signaling from cell membrane to nucleus through SMAD proteins..
Nature. , 390 (1997), pp. 465-471
[9]
Hoffmann A., Gross G..
BMP signalling pathways in cartilage and bone formation..
Crit Rev Eukaryot Gene Expr. , 11 (2001), pp. 23-45
[10]
Walker D.H., Wright N.M..
Bone morphogenetic protein in spinal fusion..
Neurosurg Focus. , 13 (2002), pp. A-3
[11]
Guerado Parra E., Díaz Martín A., Arrabal García M.P., Cifuentes Rueda M., Andrades Gómez J.A., Becerra Ratia J..
Células madre e ingeniería tisular ósea. Bases celulares y perspectives terapéuticas..
Rev Ortop Traumatol. , 47 (2003), pp. 362-374
[12]
Samartzis D., Khanna N., Shen F.H., An H.S..
Update on Bone Morphogenetic Proteins and Their Application in Spine Surgery..
J Am Coll Surg. , 200 (2005), pp. 236-248
[13]
Hogan B.L..
Bone morphogenetic proteins: multifunctional regulators of vertebrate development..
Genes Dev. , 10 (1996), pp. 1580-1594
[14]
Yamashita H., Dijke P., Heldin C.H., Miyazako K..
Bone morphogenetic protein receptors..
Bone. , 19 (1996), pp. 569-574
[15]
Bishop R.C., Moore K.A., Hadley M.N..
Anterior cervical interbody fusion using autogenic and allogeneic bone graft substrate: a prospective comparative analysis..
J Neurosurg. , 85 (1996), pp. 206-210
[16]
Cauthen J.C., Kinard R.E., Vogler J.B., Jackson D.E., DePaz O.B., Hunter O.L., et-al..
Outcome analysis of noninstrumented anterior cervical diskectomy and interbody fusion in 348 patients..
Spine. , 23 (1998), pp. 188-192
[17]
Samartzis D., Shen H., Goldberg E.J., An H.S..
Is autograft the gold standard in achieving radiographic fusion in one-level anterior cervical diskectomy and fusion with rigid plate fixation..
Spine. , 30 (2005), pp. 1756-1761
[18]
Wimmer C., Krismer M., Gluch H., Ogou M., Stockl B., et-al..
Autogenic versus allogenic bone grafts in anterior lumbar interbody fusion..
Clin Orthop. , 360 (1999), pp. 122-126
[19]
Jorgenson S., Lowe T., France J., Sabin J..
A prospective analysis of autograft in posterolateral lumbar fusion in the same patient: A minimum of 1 year follow-up in 144 patients..
Spine. , 19 (1994), pp. 2048-2053
[20]
Wang J.C., Mc Donough P.W., Endow K.K., Delamarter R.B..
Increased fusin rates with cervical plating for two-level anterior cervical discectomy and fusion..
Spine. , 25 (2001), pp. 41-45
[21]
Wang J.C., Mc Dounough P.W., Kanim L.E.A., Endow K.K., Delamarter R.B..
Increased fusion rates with cervical plating for three-level anterior cervical discectomy and fusion..
Spine. , 26 (2000), pp. 643-647
[22]
Bolesta M.J., Rechtine G.R., Chrin A.M..
Three and four level anterior cervical discectomy and fusion with plate fixation: a prospective study..
Spine. , 25 (2000), pp. 2040-2044
[23]
Bose B..
Anterior cervical instrumentation enhances fusion rates inmultilevel reconstruction in smokers..
J Spinal Dosord. , 14 (2001), pp. 3-9
[24]
Boden S.D., Schimandle J.H., Hutton W.C., Chen M.I..
The use of an osteoinductive growth for lumbar spinal fusion: Part I. Biology of spinal fusion..
Spine. , 20 (1995), pp. 2626-2632
[25]
Morone M.A., Boden S.D., Hair G., Martin G.J., Racine M., Titus L., et-al..
Gene expression during autograft lumbar spine fusion and the effect of bone morphogenetic protein 2..
Clin Orthop. , 351 (1998), pp. 252-265
[26]
Lowery G.L., Mc Donough R.F..
The significance of hardware failure in anterior cervical plate fixation. Patients with 2-to 7-year follow-up..
Spine. , 23 (1998), pp. 181-187
[27]
Paramore C.G., Dickman C.A., Sonntag V.K..
Radiographic and clinical follow-up review of Caspar plates in 49 patients..
J Neurosurg. , 84 (1996), pp. 957-961
[28]
Guerado E..
Osteogénesis terapéutica en cirugía de raquis. Bases científicas de la artrodesis vertebral. I. Aspectos biomecánicos..
Rev Ortop Traumatol. , 49 (2005),
[29]
Friedlaender G.E..
Current concepts review. Bone grafts. The basic science rationale for clinical applications..
J Bone Joint Surg Am. , 69A (1987), pp. 786-790
[30]
Steinman J.C., Herkowitz H.N..
Pseudoartrosis of the spine..
Clin Orthop. , 284 (1992), pp. 80-90
[31]
Zdeblick T.A..
A prospective, randomized study of lumbar fusion..
Spine. , 18 (1993), pp. 983-991
[32]
Boatright K.C., Boden S.D..
Biologic Enhacement of Spinal Arthrodesis: Past, Present, and Future..
Biologic Enhacement of Spinal Arthrodesis: Past, Present, and Future.,
[33]
Gibson S., Mc Leod I., Wardlaw D., Urbaniak S..
Allograft versus Autograft in Instrumented Posterolateral Lumbar Spinal Fusion. A Randomized Control Trial..
Spine. , 27 (2002), pp. 1599-1603
[34]
Back B., Malinin T..
Bone transplantation and human immunodeficiency virus..
Clin Orthop. , 240 (1989), pp. 129-136
[35]
Cook S.D., Dalton J.E., Prewett A.B., Whitecloud T.S..
In vivo evaluation of demineralised bone matrix as a bone graft substitute for posterior spinal fusion..
Spine. , 20 (1995), pp. 877-886
[36]
Morone M.A., Boden S.D..
Experimental posterolateral lumbar spinal fusion with a demineralized bone matrix..
Spine. , 23 (1998), pp. 159-167
[37]
Boden S.D., Schimandle J.H., Hutton W.C., Damien C.J., Benedict J.J., Baranowski C., et-al..
In Vivo Evaluation of a Resorbable Osteoinductive Composite as a Graft Substitute for Lumbar Spinal Fusion..
J Spinal Disord. , 10 (1997), pp. 1-11
[38]
Fernyhough J.C., Schimandle J.H., Weigel M.C., Edwards C.C., Levine A.M..
Chronic donor site pain complicating bone graft harvesting from the posterior iliac crest for spinal fusion..
Spine. , 17 (1992), pp. 1474-1480
[39]
Damien C.J., Christel P.S., Benedict J.J., Patat J.L., Guillemin G..
A composite of natural coral, collagen, bone protein, and basic fibroblast growth factor tested in a rat subcutaneous model..
Ann Chir Gynaecol. , 82 (1993), pp. 117-128
[40]
Albers H., Hresko M.T., Carlson J., Hall J.E..
Comparison of Single and Dual Rod Techniques for Posterior Spinal Instrumentation in the Treatment of Adolescent Idiopathic Scoliosis..
Spine. , 25 (2000), pp. 1944-1949
[41]
Wattenberger J.M., Richards B.S., Herring J.A..
A Comparison of Single-Rod Instrumentation with Double-Rod Instrumentation in Adolescent Idiopathic Scoliosis..
Spine. , 25 (2000), pp. 1680-1688
[42]
Boden S.D., Schimandle J.H., Hutton W.C..
Lumbar intertransverse process spine arthrodesis using a bovine-derived osteoinductive bone protein..
J Bone Joint Surg Am. , 77A (1995), pp. 1404-1417
[43]
Martin G., Boden S., Titus L., Scarborough N..
New Formulations of Demineralized Bone Matrix as a More Effective Graft Alternative in Experimental Posterolateral Lumbar Spine Arthrodesis..
Spine. , 24 (1999), pp. 637-645
[44]
Suh D.Y., Boden S.D., Louis-Ugbo J., Mayr M., Murakami H., Kim H.S., et-al..
Delivery of Recombinant Human Bone Morphogenetic Protein-2 Using a Compression-Resistant Matrix in Posterolateral Spine Fusion in the Rabbit and in the Non-Human Primate..
Spine. , 27 (2002), pp. 353-360
[45]
Hecht B., Fisxhgrund J., Herkowitz H., Penman L., Toth J., Shirkhoda A..
The Use of Recombinant Human Bone Morphogenetic Protein 2 (rhBMP-2) to Promote Spinal Fusion in a Nonhuman Primate Anterior Interbody Fusion Model..
Spine. , 24 (1999), pp. 629-636
[46]
Delecrin J., Takahashi S., Gouin F., Passuti N..
A synthetic porous ceramic as a bone graft substitute in the scoliosis: a prospective, randomized study..
Spine. , 25 (2000), pp. 563-569
[47]
Meunier P.J..
Assessment of bone turnover by histomorphometry in osteoporosis..
Assessment of bone turnover by histomorphometry in osteoporosis., pp. 317-332
[48]
Caplan A.I..
The mesengenic process..
Clin Plast Surg. , 21 (1994), pp. 429-435
[49]
Nimni M.E., Bernick S., Ertl D.C., Nishimoto S.K., Strates B., Villanueva J..
Ectopic bone formation in senescent animals implanted with embryonic calvaria cells..
Clin Orthop. , 234 (1988), pp. 255-266
[50]
Termine J.D..
Cellular activity, matrix proteins and agin bone..
Exper Gerontol. , 25 (1990), pp. 217-221
[51]
Owen M.E..
Marrow stromal stem cells..
J Cell Sci. , 10 (1988), pp. 63-76
[52]
Caplan A.I..
Mesenchymal stem cells..
J Orthop Res. , 9 (1991), pp. 641-650
[53]
Wang E.A., Rosen V., Cordes P., Hewick R.M., Kriz M.J., Luxenberg D.P..
Purification and characterization of other distinct bone-inducing factors..
Proc Natl Acad Sci USA. , 85 (1988), pp. 9484-9488
[54]
Katoh T., Sato K., Kawamura M., Iwata H., Miura T..
Osteogenesis in sintered bone combined with bovine bone morphogenetic protein..
Clin Orthop. , 287 (1993), pp. 266-275
[55]
Lindholm T.C., Lindholm T.S., Marttinen A., Urist M.R..
Bovine bone morphogenetic protein (bBMP/NCP)-induced repair of skull trephine defects in pigs..
Clin Orthop. , 301 (1994), pp. 263-270
[56]
Ellingsworth L.R., Brennan J.E., Fok K., Rosen D.M., Bentz H., Piez K.A., et-al..
Antibodies to the N-terminal portion of cartilage-inducing factor-A and transforming growth factor β.
J Biol Chem. , 261 (1986), pp. 12362-12367
[57]
Nimni M.E..
Polypeptide growth factors: targeted delivery systems..
Biomaterials. , 18 (1997), pp. 1201-1225
[58]
Nishi N., Matsushita O., Yuube K., Miyanaka H., Okabe A., Wada F..
Collagen-binding growth factors: production and characterization of functional fusion proteins having a collagen-binding domain..
Proc Natl Acad Sci USA. , 95 (1998), pp. 7018-7023
[59]
Andrades J.A., Wu L.T., Hall F.L., Nimni M.E., Becerra J..
Engineering, expression, and renaturation of a collagen-targeted human bFGF fusion protein..
Growth Factors. , 18 (2001), pp. 261-275
[60]
Andrades J.A., Han B., Becerra J., Sorgente N., Hall F.L., Nimni M.E..
A Recombinant Human TGF-beta1 Fusion Protein with Collagen-Binding Domain Promotes Migration, Growth, and Differentiation of Bone Marrow Mesenchymal Cells..
Exp Cell Res. , 250 (1999), pp. 485-498
[61]
Andrades J.A., Santamaría J.A., Wu L.T., Hall F.L., Nimni M.E., Becerra J..
Production of a recombinant human bFGF with a collagen-binding domain..
Protoplasma. , 218 (2001), pp. 95-103
[62]
Becerra J., Andrades J.A., Ertl D.C., Sorgente N., Nimni M.E..
Demineralized bone matrix mediates differentiation of bone marrow stromal cells in vitro: effect of age of cell donor..
J Bone Miner Res. , 11 (1996), pp. 1703-1714
[63]
Becerra J., Andrades J.A., Santamaría J.A., Cifuentes M., Guerado E..
Regeneración ósea, terapia celular e ingeniería tisular..
Med Clin (Barc). , 116 (2001), pp. 23-34
[64]
Becerra J, Andrades JA, Claros, S, Bertrand ML, González C, Guerado E. Marrow Cells In Vitro Committed by a Novel TGF-ß1 for Bone Repair Cell Therapy. A Case Report. J Bone Joint Surg Br (en evaluación)..
[65]
Bianco P., Riminucci M..
Stem cells in medicine..
Recenti Prog Med. , 92 (2001), pp. 251-256
[66]
Bianco P., Robey P.G..
Stem cells in tissue engineering..
Nature. , 414 (2001), pp. 118-121
[67]
Andrades J.A., Santamaría J.A., Nimni M.E., Becerra J..
Selection, amplification and induction of a bone marrow cell population to the chondro-osteogenic lineage by rhOP-1. An in vitro and in vivo study..
Int J Dev Biol. , 45 (2001), pp. 689-693
[68]
Cunningham B.W., Janayama M., Parker L.M., Weis J.C., Sefler J.C., Fedder J.L., et-al..
Osteogenic protein versus autologous interbody arthrodesis in the sheep thoracic spine: A comparative endoscopic study using the Bagby and Kulisch interbody fusion device..
Spine. , 24 (1999), pp. 509-518
[69]
Cook S.D., Dalton J.E., Tan E.H., Whitecloud T.S., Rueger D.C..
In vivo evaluation of recombinant human osteogenic protein (rhOP-1) implants as a bone graft substitute for spinal fusions..
Spine. , 19 (1994), pp. 1655-1663
[70]
Geesink R.G., Hoefnagels N.H., Bulstra S.K..
Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a fibular defect..
J Bone Joint Surg Br. , 81B (1999), pp. 710-718
[71]
Hecht B.P., Fischgrund J.S., Herkowitz H.N., Penman L., Toth J.M., Shirkhoda A..
The use of recombinant human bone morphogenetic protein 2 (rhBMP-2) to promote spinal fusion in a nonhuman primate anterior interbody fusion model..
Spine. , 24 (1999), pp. 629-636
[72]
Boden S.D., Martin G.J., Horton W.C., Truss T.L., Sandhu H.S..
Laparoscopic anterior spinal arthrodesis with rhBMP-2 in a titanium interbody threaded cage..
J Spinal Disord. , 11 (1998), pp. 95-101
[73]
Boden S.D., Zdeblick T.A., Sandhu H.S., Heim S.E..
The use of rBMP-2 in interbody fusion cages: Definitive evidence of osteoinduction in humans. A preliminary report..
Spine. , 25 (2000), pp. 376-381
[74]
Takaoaka K., Yoshikawa H., Hashimoto J., Miyamoto S., Masuhara K., Nakahara H., et-al..
Purification and characterization of a bone-inducing protein from a murine osteosarcoma (Dunn type)..
Clin Orthop. , 292 (1993), pp. 329-336
[75]
Saito N., Okada T., Horiuchi H., Ota H., Takahashi J., Murakami N., et-al..
Local bone formation by injection of recombinant human bone morphogenetic protein-2 contained in polymer carriers..
Bone. , 32 (2003), pp. 381-386
[76]
Wheeler D.L., Chamberland D.L., Schmitt J.M., Buck D.C., Brekke J.H., Hollinger J.O., et-al..
Radiomorphometry and biomechanical assessment of recombinant human bone morphogenetic protein 2 and polymer in rabbit radius ostectomy model..
J Biomed Mater Res. , 43 (1998), pp. 365-373
[77]
Ueno Y., Shima Y., Ueyoshi A., Harada M., Sakata H., Maeda T..
An experimental study of sintered bone implants..
Bessatu Seikeigeka. , 8 (1985), pp. 85-88
[78]
Kokubo S., Fujimoto R., Yokota S., Fukushima S., Nozaki K., Takahashi K., et-al..
Bone regeneration by recombinant human bone morphogenetic protein-2 and a novel biodegradable carrier in a rabbit ulnar defect model..
Biomaterials. , 24 (2003), pp. 1643-1651
[79]
Scaduto A.A., Lieberman J.R..
Gene therapy for osteoinduction..
Orthop Clin North Am. , 30 (1999), pp. 625-633
[80]
Boden S.D., Titus L., Hair G., Liu Y., Viggeswasapu M., Nanes M.S., et-al..
Lumbar spine fusion by local gene therapy with a cDNA encoding a novel osteoinductive protein (LMP-1)..
Spine. , 23 (1998), pp. 2486-2492
[81]
Helm G.A., Alden T.D., Beres E.J., Hudson S.B., Das S., Engh J.A., et-al..
Use of bone morphogenetic protein-9 gene therapy to induce spinal arthrodesis in the rodent..
J Neurosurg. , 91 (2000), pp. 191-196
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos