metricas
covid
Buscar en
Revista Española de Cirugía Ortopédica y Traumatología (English Edition)
Toda la web
Inicio Revista Española de Cirugía Ortopédica y Traumatología (English Edition) Biomechanical Performance of Anterior Grafts in Lumbar Spine Surgery. A Comparat...
Información de la revista
Vol. 51. Núm. 5.
Páginas 284-295 (septiembre - octubre 2007)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 51. Núm. 5.
Páginas 284-295 (septiembre - octubre 2007)
Research
Acceso a texto completo
Biomechanical Performance of Anterior Grafts in Lumbar Spine Surgery. A Comparative Finite-element Analysis
Comportamiento biomecánico del injerto anterior en la cirugía del raquis lumbar. Estudio comparativo mediante un modelo de elementos finitos
Visitas
1373
G. Salóa,
Autor para correspondencia
Gsalo@imas.imim.es

Corresponding author: Departamento de Traumatología y Cirugía Ortopédica. Hospital del Mar. Universitat Autònoma de Barcelona. Passeig Marítim, 25-29. 08003 Barcelona. Spain.
, E. Cáceresa, D. Lacroixb, J.A. Planellb, A. Molinaa, M. Ramíreza, A. Lladóa
a IMAS. Del Mar and De l’Esperança Hospitals. Barcelona. Spain
b Centre de Recerca en Enginyeria Biomédica de Catalunya (CREB). Department of Material Science. Catalonia Polytechnic University. Barcelona. Spain
Este artículo ha recibido
Información del artículo
Purpose

To study the biomechanical performance of various allografts and the effects of endplate treatment on a lumbar corporectomy model.

Methods

A modified non-lineal tri-dimensional finite-element model of the lumbar spine was used, to which a set of transpedicular instruments was adapted. By means of a finite- element analysis, modeling was carried out of diaphyseal fragments of the femur, the tibia and the fibula. Four configurations were analyzed: with one femur, with one tibia, with three fibulas and with six fibulas. Four surfaces were evaluated that gave support to the graft according to the resection of the various components. Compression loads of 1,000 N were applied, as well as flexion, extension and rotation of 15 Nm respectively. The stresses and displacements caused were calculated.

Results

Full cartilage and subchondral bone resection is the configuration that least disrupts stresses within the adjacent vertebrae whereas the use of fibular fragments causes the greatest disruption. The use of the tibial bone gives rise to an asymmetry in the displacement area because of the shape of the said graft. The femur does not bring about a significant disruption of stresses in the adjacent vertebrae thereby constituting a more physiological construct.

Conclusions

Preservation of the endplate's cortical bone does not lead to any biomechanical advantage in the reconstruction of the anterior spine. Femoral allografts are the most appropriate ones to replace the vertebral body, compared with the tibia or the fibula.

Key words:
biomechanics
lumbar fusion
finite-element analysis
bone allograft
Objetivo

Investigar el comportamiento biomecánico de diversos aloinjertos y el efecto del tratamiento del platillo vertebral en un modelo de corporectomía lumbar.

Método

Se utiliza un modelo modificado no lineal de elementos finitos en tres dimensiones de la columna lumbar al que se adaptó un instrumental transpedicular. Se modelaron por elementos finitos un fragmento diafisario de fémur, uno de tibia y uno de peroné. Se investigaron cuatro configuraciones: con fémur, con tibia, con tres peronés y con seis peronés. Se evaluaron cuatro superficies sobre las cuales se sustentaba el injerto en función de la resección de los distintos componentes. Se aplicaron fuerzas de compresión de 1.000 N, flexión, extensión y rotación de 15 Nm respectivamente. Se calcularon las tensiones y desplazamientos generados.

Resultados

La resección completa de cartílago y hueso subcondral es la configuración que menos altera las tensiones dentro de las vértebras adyacentes. El uso de fragmentos de peroné modifica en mayor medida las tensiones en las vértebras adyacentes. El uso de tibia genera una asimetría en los campos de desplazamiento debido a la forma de dicho injerto. Los resultados con fémur modifican en menor medida los estreses en las vértebras adyacentes, configurando un montaje más fisiológico.

Conclusiones

La preservación del hueso cortical del platillo vertebral no ofrece ninguna ventaja biomecánica en la reconstrucción de la columna anterior. El aloinjerto de fémur es el más adecuado para la sustitución del cuerpo vertebral, comparado con tibia y peroné.

Palabras clave:
biomecánica
fusión lumbar
análisis por elementos finitos
aloinjerto óseo
El Texto completo está disponible en PDF
References
[1.]
K. Abumi, M.M. Panjabi, J. Duranceau.
Biomechanical evaluation of spinal fixation devices. Part III. Stability provided by six spinal fixation devices and interbody bone graft.
Spine, 14 (1989), pp. 1249-1256
[2.]
M.H. Krag.
Biomechanics of thoracolumbar spinal fixation. A rewiew.
Spine, 16 (1991), pp. 85-99
[3.]
F.S. Kleinstueck, S.S. Hu, D.S. Bradford.
Use of allograft femoral rings for spinal deformity in adults.
Clin Orthop Relat Res, 394 (2002), pp. 84-91
[4.]
J.A. Kozak, A.E. Heilman, J.P. O’Brien.
Anterior lumbar fusion options.
Clin Orthop Relat Res, 300 (1994), pp. 45-51
[5.]
R.W. Molinari, K.H. Bridwell, S.J. Klepps, C. Baldus.
Minimum 5-year follow-up of anterior column structural allografts in the thoracic and lumbar spine.
Spine, 24 (1999), pp. 967-972
[6.]
D.M. Ehrler, A.R. Vaccaro.
The use of allograft bone in lumbar spine surgery.
Clin Orthop Relat Res, 371 (2000), pp. 38-45
[7.]
C.M. Atienza-Vicente, J.M. Prat-Pastor, J.L. Peris-Serra, M. Comín-Clavijo, F. Molla-Doménech, A. Gómez-Pérez.
Estudio biomecánico de cuatro sistemas de fijación y del uso de injerto anterior de un modelo de elementos finitos de la columna lumbar.
Rev Ortop Traumatol, 46 (2002), pp. 542-550
[8.]
T. Zander, A. Rohlmann, C. Klockner, G. Bergmann.
Effect of bone graft characteristics on the mechanical behaviour of the lumbar spine.
J Biomech, 35 (2002), pp. 491-497
[9.]
C. Adam, M. Pearcy, P. McCombe.
Stress analysis of interbody fusion-finite element modelling of intervertebral implant and vertebral body.
Clin Biomech, 18 (2003), pp. 265-272
[10.]
C.S. Chen, C.K. Cheng, C.L. Liu, W.H. Lo.
Stress analysis of the disc adjacent to interbody fusion in lumbar spine.
Med Eng Phys, 23 (2001), pp. 485-493
[11.]
J. Noailly, D. Lacroix, J.A. Planell.
The mechanical significance of the lumbar spine components – A finite element stress analysis, ASME Bioeng.
Conf., Key Biscane, pp. 119
[12.]
J. Noailly, D. Lacroix, J.A. Planell.
Stress analysis in the lumbar spine; mechanical role of the internal components. International congress of computational bioengineering.
Zaragoza, (2003),
[13.]
Smit TH. The mechanical significance of the trabecular bone architecture in a human vertebra. [Tesis Doctoral] TU Hamburg-Harburg. Aachen, Germany: Shaker Verlag, 1996.
[14.]
T.H. Smit, A. Odgaard, E. Schneider.
Structure and function of vertebral trabecular bone.
Spine, 22 (1997), pp. 2823-2833
[15.]
M.D. Humzah, R.W. Soames.
Human intervertebral disc: structure and function.
Anat Rec, 220 (1988), pp. 337-356
[16.]
S. Roberts, J.P.G. Urban, H. Vans, S.M. Eisenstein.
Transport properties of the human cartilage endplate in relation to its composition and calcification.
Spine, 21 (1996), pp. 415-420
[17.]
M.J. Silva, T.M. Keaveny, W.C. Hayes.
Direct and computed tomography thickness measurements of the human lumbar vertebral shell and endplate.
Bone, 15 (1994), pp. 409-414
[18.]
J.J. Cassidy, A. Hiltner, E. Baer.
Hierarchical structure of the intervertebral disc.
Connect Tiss Res, 23 (1989), pp. 75-88
[19.]
M.M. Panjabi, T. Oxland, K. Takata, V. Goel, J. Duranceau, M. Krag.
Articular facets of the human spine. Quantitative three-dimensional anatomy.
Spine, 18 (1993), pp. 1298-1310
[20.]
M. Sharma, N.A. Langrana, J. Rodríguez.
Role of ligaments and facets in lumbar spinal stability.
Spine, 20 (1995), pp. 887-900
[21.]
L.A. Hayman, P.F. Benedetti, L.R. Kuhns, L.M. Fahr, K.H. Taber.
The nomenclature and sectional imaging anatomy III: Capsular membranes and minor spinal ligaments.
J Comp Assist Tom, 24 (2000), pp. 824-827
[22.]
M.M. Panjabi, G. Greenstein, J. Duranceau, L.P. Nolte.
Three-dimensional quantitative morphology of lumbar spinal ligaments.
J Spinal Disord, 4 (1991), pp. 54-62
[23.]
S.I. Chen, R.M. Lin, C.H. Chang.
Biomechanical investigation of pedicle screw-vertebrae complex: a finite element approach using bonded and contact interface conditions.
Med Eng Phys, 25 (2003), pp. 275-282
[24.]
C.M. Whyne, S.S. Hu, J.C. Lotz.
Parametric finite element analysis of vertebral bodies affected by tumours.
J Biomech, 34 (2001), pp. 1317-1324
[25.]
K. Ueno, Y.K. Liu.
A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion.
J Biomech Eng, 109 (1987), pp. 200-209
[26.]
A.N. Natali, E.A. Meroi.
The mechanical behaviour of bony endplate and annulus in prolapsed disc configuration.
J Biomech Eng, 15 (1993), pp. 235-239
[27.]
A. Shirazi-Adl, A.M. Ahmed, S.C. Shrivastava.
A finite element study of a lumbar motion segment subjected to pure sagittal plane moments.
J Biomech, 19 (1986), pp. 331-350
[28.]
A. Shirazi-Adl.
On the fibre composite material models of disc annulus – comparison of predicted stresses.
J Biomech, 22 (1989), pp. 357-365
[29.]
L.P. Li, M.D. Buschmann, A. Shirazi-Adl.
A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression.
J Biomech, 33 (2000), pp. 1533-1541
[30.]
J.B. Myklebust, F. Pintar, N. Noganandan, J.F. Cusick, D. Mayman, T.J. Myers, et al.
Tensile strength of spinal ligaments.
Spine, 13 (1988), pp. 526-531
[31.]
J. Chazal, A. Tanguy, M. Bourges, G. Gaurel, G. Escande, M. Guillot, et al.
Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction.
J Biomech, 18 (1985), pp. 167-176
[32.]
F.A. Pintar, N. Yoganandan, T. Myers, A. Elhagediab, A. Sances.
Biomechanical properties of human lumbar spine ligaments.
J Biomech, 25 (1992), pp. 1351-1356
[33.]
R. Eberlein, G.A. Holzapfel, A.J. Schulze-Bauer.
An anisotropic constitutive model for annulus tissue and enhanced finite element analyses of intact lumbar disc bodies.
Com Meth Biomech Biomed Eng, 4 (2001), pp. 209-230
[34.]
W.R. Taylor, E. Roland, H. Ploeg, D. Hertig, R. Klabunde, M.D. Warner, et al.
Determination of orthotropic bone elastic constants using FEA and modal analysis.
J Biomech, 35 (2002), pp. 767-773
[35.]
M.A. Adams, W.C. Hutton, J.R.R. Stott.
The resistance to flexion of the lumbar intervertebral joint.
Spine, 5 (1980), pp. 245-253
[36.]
M. Panjabi, V.K. Goel, K. Takata.
Physiological strains in the lumbar spinal ligaments.
Spine, 7 (1982), pp. 192-203
[37.]
J. Noailly, D. Lacroix, J.A. Planell.
Finite element study of a novel intervertebral disc substitute.
Spine, 30 (2005), pp. 2257-2264
[38.]
E. Cáceres, A. Ruiz, P. del Pozo, A. García, G. Saló.
Anterior structural allografts in thoracic and lumbar spine surgery.
J Bone Joint Surg Br, 83-B (2001), pp. 247
[39.]
S. Rao, H. McKellop, D. Chao, T.A. Schildhauer, E. Gendler, T.M. Moore.
Biomechanical comparison of bone graft used in anterior spinal reconstructions. Freeze-dried demineralised femoral segments versus fresh fibular segments and tricortical iliac blocks in autopsy specimens.
Clin Orthop Relat Res, 289 (1993), pp. 131-135
[40.]
T.E. Siff, E. Kamaric, P.C. Noble, S.I. Esses.
Femoral ring versus fibular strut allografts in anterior lumbar interbody arthrodesis.
Spine, 24 (1999), pp. 659-665
[41.]
B.W. Cunningham, D.W. Polly.
The use of interbody cage devices for spinal deformity: a biomechanical perspective.
Clin Orthop Relat Res, 394 (2002), pp. 73-83
[42.]
T. Zander, A. Rohlmann, C. Klockner, G. Bergmann.
Comparison of the mechanical behavior of the lumbar spine following mono– and bisegmental stabilization.
Clin Biomech, 17 (2002), pp. 439-445
[43.]
T.R. Oxland, J.P. Grant, M.F. Dvorak, C.G. Fisher.
Effects of endplate removal on the structural properties of the lower lumbar vertebral bodies.
Spine, 28 (2003), pp. 771-777
[44.]
J. Hollowell, D. Vollmer, C. Wilson, F. Pintar, N. Yoganandan.
Biomechanical analysis of thoracolumbar interbody constructs: How important in the endplate?.
Spine, 21 (1996), pp. 1032-1036
[45.]
A. Polikeit, S.J. Ferguson, L.P. Nolte, T.E. Orr.
The importance of the end-plate for interbody cages in the lumbar spine.
Eur Spine J, 12 (2003), pp. 556-561
[46.]
R. Huiskes, R. Ruimerman, G.H. van Lenthe, J.D. Janssen.
Effects of mechanical forces on maintenance and adaptation of form in trabecular bone.
Nature, 405 (2000), pp. 704-706
[47.]
D.R. Carter.
Mechanical loading history and skeletal biology.
J Biomech, 20 (1987), pp. 1095-1109
[48.]
T.R. Lehmann, K.F. Spratt, J.E. Tozzi, J.N. Weinstein, S.J. Reinarz, G.Y. El-Khoury, et al.
Long-term follow-up of lower lumbar fusion patients.
Spine, 12 (1987), pp. 97-104

SECOT Foundation Award for Basic Research in Orthopedic and Trauma Surgery 2006.

Copyright © 2007. Sociedad Española de Cirugía Ortopédica y Traumatología (SECOT). All rights reserved
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos